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Abstract. We review the recent progress made in applying the time-dependent close-coupling approach to
ionizing collisions of electrons, photons, and ions with small atoms and molecules. The last twenty years
have seen a proliferation of non-perturbative approaches applied to fundamental atomic and molecular
scattering processes. Such processes form the building blocks of describing the dynamics of plasmas over a
wide range of temperatures and densities, and also provide insight into the long-range Coulomb interactions
between charged particles. Studies of the few-body Coulomb problem presented in electron, photon, or
ion-impact ionization of small atoms and molecules, by direct solution of the time-dependent Schrödinger
equation, are particularly useful because the complicated three-body boundary conditions of more than one
continuum particle in a Coulomb potential are not required. With the continuing growth and increasing
availability of high-performance computing resources, such methods can now be applied to a wide variety
of scattering processes. The recent progress made using such a time-dependent approach is described in
this colloquium. In this paper, we focus on the recent results obtained for one-, two-, and three-electron
systems, thus building on a previous review of the time-dependent close-coupling method [M.S. Pindzola
et al., J. Phys. B 40, R39 (2007)], which also described the application to multi-electron targets.

1 Introduction

A time-dependent approach to solving the Schrödinger
equation for two electrons in the continuum removes the
need for an asymptotic boundary condition for the two-
electron wavefunction in order to extract scattering in-
formation. The difficulty of the two-electron continuum
boundary condition was first pointed out by Rudge and
Seaton [1] and Peterkop [2]. The important advantage af-
forded by a time-dependent approach was first realized by
Bottcher [3,4], and was followed by early studies [5,6] of
electron scattering from hydrogen. Several s-wave (zero
angular momenta) studies were also subsequently per-
formed [7–9]. Since then, the development of the time-
dependent close-coupling approach generalized to treat an
arbitrary number of angular momenta [10] has allowed
progress on many ionization processes found in atomic
collision physics.

The need for a non-perturbative approach to few-body
atomic and molecular collisions grew more pressing as im-
pressive new technologies were applied to such reactions.
In particular, multiple coincidence measurements, the use
of a magnetic-optical-trap (MOT), and the cold target
recoil ion momentum spectroscopy (COLTRIMS) tech-
nique [11] all contributed to new and ever more precise
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measurements of the scattering properties of atomic colli-
sion systems. Although previous perturbative techniques,
and many variants on these, were often adequate at high
impact energies, or for highly charged systems, it was
long recognized that perturbative approaches are inaccu-
rate when the three-body interaction between particles be-
comes important. This occurs at low impact energies, and
for neutral (or near-neutral) targets, where the electron-
electron potential is of the same order as the electron-
nuclear potential, and when the outgoing electrons have
enough time to interact and exchange energy.

In the last twenty years many novel non-perturbative
approaches have been applied to few-body atomic and
molecular collisions. The R-matrix approach, first pio-
neered by Burke and collaborators [12,13], has been widely
used in the calculation of electron-impact excitation and
photoionization cross sections. It has been particularly
useful in computing the large datasets required for as-
trophysical purposes, such as the atomic data needed to
calculate accurate opacities of iron. This approach was
extended to treat electron-impact ionization problems,
and also excitation cross sections where coupling to the
continuum is important, by inclusion of pseudo-states
in the R-matrix expansion [14,15]. Such R-matrix with
pseudo-states (RMPS) approaches have now been applied
to a wide variety of scattering problems, and semi- and
fully-relativistic versions of RMPS methods are available.
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Recently, the R-matrix with pseudostates approach has
been extended to examine electron-impact ionization of
small molecular targets [16]. A hyperspherical R-matrix
approach using semiclassical outgoing waves (HRM-SOW)
was applied to double photoionization of He in the early
2000s [17,18]. It has also been used to examine double
photoionization of Be [19].

The convergent close-coupling (CCC) approach was
first applied to electron-hydrogen scattering in the early
1990s [20] and has since been extensively applied to
electron-helium scattering [21–23] as well as electron scat-
tering from a range of alkali atoms [24]. The CCC ap-
proach was applied to double photoionization of He in the
mid 1990s [25–27] and has since explored double photoion-
ization processes in other small atoms and ions, such as
Be [28] and Li [29,30]. More recently, the CCC approach
has also been applied to antiproton impact ionization of H
and He [31,32].

An exterior complex-scaling (ECS) approach was first
proposed as a solution to the three-body problem of
the electron-impact ionization of hydrogen in the late
1990s [33,34]. It was very successful in reproducing a wide
range of measured angular distributions for this ioniza-
tion process. More recently, the ECS method was ap-
plied to the double photoionization of He [35] and also
molecular hydrogen [36,37]. It has also been extended
to examine two-photon double ionization processes in He
and H2 [38,39].

The time-dependent close-coupling (TDCC) approach
discussed in this review differs fundamentally from
these previous non-perturbative approaches in that it
solves the time-dependent, rather than time-independent,
Schrödinger equation. It thus avoids the need to appeal to
a final-state boundary condition in order to extract scat-
tering information. For three-body Coulomb problems, the
boundary condition of two electrons moving in the field of
a charged third body has long been known to be notori-
ously difficult to deal with, although recent progress has
been made in recasting the problem into a somewhat more
tractable solution [40,41]. The TDCC approach takes ad-
vantage of the rapid advances made in high-performance
computing resources to efficiently solve the discretized
Schrödinger equation for two (or more) electrons mov-
ing in the field of a charged nucleus (or nuclei). In the
following sections we provide a detailed description of the
application of the TDCC approach to electron-impact ion-
ization, (multiple) photoionization, and ion-impact ioniza-
tion of small atoms and molecules, work that has been
ongoing for now many years. We provide a presentation of
the pertinent coupled equations that need to be solved for
the problem under consideration, and show how scattering
information may be extracted by suitable projection meth-
ods. We then discuss some of the resulting cross sections
and angular distributions for a variety of scattering pro-
cesses, and briefly show how these calculations can shed
some insight on the underlying physical picture governing
the scattering events. Atomic units are used unless other-
wise stated. We end with a short conclusion and discuss
future plans and challenges.

2 Electron-impact ionization of small atoms
and molecules

2.1 Single ionization of small atoms

The time-dependent Schrödinger equation for electron
scattering from a one-electron atom of nuclear charge Z
can be written as

i
∂Ψ(r1, r2, t)

∂t
= Hatom(r1, r2)Ψ(r1, r2, t), (1)

where the time-independent Hamiltonian is given by

Hatom(r1, r2) =
2∑

i=1

(
−1

2
∇2

i −
Z

ri

)
+

1
|r1 − r2| . (2)

By taking advantage of the spherical symmetry of atoms,
the total wavefunction for the two electrons may be ex-
panded in coupled spherical harmonics and projected onto
the time-dependent Schrödinger equation to obtain the
following set of partial differential equations for each LS
symmetry:

i
∂PLS

l1l2
(r1, r2, t)
∂t

= Tl1l2(r1, r2)P
LS
l1l2(r1, r2, t)

+
∑
l′1l′2

V L
l1l2,l′1l′2

(r1, r2)PLS
l′1l′2

(r1, r2, t), (3)

where

Tl1l2(r1, r2) =
2∑

i=1

(
−1

2
∂2

∂r2i
+
li(li + 1)

2r2i
− Z

ri

)
(4)

and the coupling operator is given by

V L
l1l2,l′1l′2

(r1, r2)

= (−1)l1+l′1+L
√

(2l1 + 1)(2l′1 + 1)(2l2 + 1)(2l′2 + 1)

×
∑

λ

(r1, r2)λ
<

(r1, r2)λ+1
>

(
l1 λ l

′
1

0 0 0

)(
l2 λ l

′
2

0 0 0

){
l1 l2 L
l′2 l

′
1 λ

}
, (5)

where r<(r>) = min(max)(r1, r2). If we wish to con-
sider electron scattering from multi-electron atoms, we
must add a potential term to the single particle operator
Tl1l2(r1, r2) of equation (4). For example, for electron scat-
tering from helium, the extra potential terms can be writ-
ten as the sum of a “direct” potential term VD, given by

VD(r) =
∫ ∞

0

P 2
1s(r1)

max(r1, r)
dr1 (6)

and an “exchange” potential term VX . One option for
the VX potential is a semiempirical local potential [42]
defined as

VX(r) = −αs

(
24ρ1s(r)

π

)1/3

. (7)

Here, P1s(r) is a frozen-core radial orbital calculated as
the hydrogenic ground state radial orbital of He+, αs is



Eur. Phys. J. D (2012) 66: 284 Page 3 of 24

Fig. 1. Radial probability densities,
summed over all channels, at four different
times as indicated for electron scattering
from He. The probability densities are in-
dicated by the colours ranging from yellow
(maximum) to blue (minimum).

an adjustable parameter and ρ1s(r) = P 2
1s/4πr2 is the

radial probability density of the core electron. Other op-
tions for the exchange potentials can also be used. For
electron scattering from targets with more than two elec-
trons, one can employ l-dependent pseudo-potentials [10]
to represent the interaction of the target electrons with
the outgoing electrons.

The two-electron radial functions of equation (3) at
time t = 0 are constructed as

PLS
l1l2(r1, r2, t = 0) =

√
1
2
[
Gk0l1(r1)Pnl2 (r2)

+ (−1)SPnl1(r1)Gk0l2(r2)
]
, (8)

where k0 is the linear momentum and Gk0l(r) is a
Gaussian radial wave packet of energy E0 = k2

0/2, with
Pnl(r) a bound radial wavefunction for a one-electron
atom. The coupled equations (3) are then propagated ac-
cording to the usual time-dependent close-coupling pre-
scription, for each LS symmetry. Our standard compu-
tational approach is to partition the (r1, r2) coordinates
of the two-dimensional radial wavefunctions and all op-
erators over the processors of a parallel computer. One
can employ explicit or implicit time propagators to solve
these close-coupled equations [10]. We have found that ex-
plicit methods are more efficient for calculations of elec-
tron scattering from atoms, even though a smaller time
step is required compared to the implicit method. An ex-
ample of the radial probability density obtained from a
TDCC calculation of electron scattering from He at an in-
cident energy of 64.6 eV is shown in Figure 1. The radial
wavefunction squared, summed over all l1l2LS channels,
is shown at four different times during the propagation
of equation (3). We observe how the wavefunction flux
moves away from the origin (where the nucleus is located).
The dominant feature at early times is a concentration of

probability density along the box boundaries; this repre-
sents elastic scattering of the incident electron, and also
some electron-impact excitation of the target. At later
times, we find significant flux near the r1 = r2 line, which
represents ionization of the target. As time gets larger
and the ionization process continues, this flux moves away
from the nucleus.

At an appropriate time t = T after the collision, in
which only outgoing waves are present in each channel, the
wavefunction in momentum space for each LS symmetry
is given by

PLS
l1l2(k1, k2, T ) =

∫ ∞

0

dr1

∫ ∞

0

dr2Pk1l1(r1)Pk2l2(r2)

× PLS
l1l2(r1, r2, t = T ), (9)

where Pkl(r) are appropriately normalized single parti-
cle continuum channels. These are Coulomb waves for
scattering from a one-electron target, or distorted waves
if scattering from a multi-electron target is considered.
We remind the reader that equation (9) is a suitable ap-
proach to extracting the ionizing amplitudes when the
time-dependent equations are propagated to sufficiently
long times, and when a sufficiently large radial mesh is
employed.

The total ionization cross section can be found by sum-
ming the square of this wavefunction over all l1l2 coupled
channels and over all LS terms, for all possible excess
energies:

σion =
wt

lt + 1
π

4k2
0

∫ ∞

0

dk1

∫ ∞

0

dk2

∑
LS

(2L+ 1)(2S + 1)

×
∑
l1l2

∣∣PLS
l1l2(k1, k2, T )

∣∣2 , (10)
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Fig. 2. Single differential cross sections
as a function of E1, the energy of the
first electron, for electron-impact single
ionization of helium at various incident
electron energies as labeled. We compare
with the measurements of [72].

where wt is the occupation number of the initial state
(e.g. 1 for H and 2 for He) with angular momentum lt.

One of the earliest TDCC applications was to elec-
tron scattering from atomic hydrogen [5,6]. Total ioniza-
tion cross sections were found to be in very good agree-
ment with absolute measurements [43] and with other
non-perturbative calculations [44–46]. This good agree-
ment between non-perturbative approaches also exists for
excited-state H [47] as well as the hydrogenic ions He+ [48]
and Li2+ [49]. Total single ionization cross sections for He
computed using the TDCC approach [50,51] were also
found to be in good agreement with several sets of mea-
surements [52,53], and total ionization cross sections from
excited-state He have also been reported [54].

In support of the atomic data needs of fusion and astro-
physical modelers, multiple TDCC calculations have been
performed for a variety of neutral atoms and ions. Total
ionization cross sections were presented for Li+ [55], and
also for neutral Li in its ground [56] and excited states [57].
Ionization cross sections for all ion stages of Be have been
calculated [58,59], as well as B [60,61]. Carbon [62] and the
ground and excited states of C+ [63,64] have also been
examined. Single ionization cross sections have been re-
ported for Ne in its ground [62] and excited [65] states,
as well as Mg [66], Mg+ [67], and the neutral and first
few ionized stages of Al [66–68]. It is also straightforward
to extract probabilities for excitation from TDCC calcu-
lations. Electron-impact excitation cross sections for Li
have been calculated [69,70] and for several ion stages of
Be [71]. Good agreement is generally found with R-matrix
with pseudo-state calculations.

The momentum space wavefunction given by equa-
tion (9) also allows us to define cross sections differential in
energy and/or angle of the outgoing electrons. The single

differential (in energy) cross section (SDCS) is defined as

dσ

dE1
=

wt

lt + 1
π

4k2
0

1
k1k2

∑
L,S

(2L+ 1)(2S + 1)

×
∫ ∞

0

dk1

∫ ∞

0

dk2 δ

(
α− tan−1 k2

k1

)

×
∑
l1l2

∣∣PLS
l1l2(k1, k2, T )

∣∣2 , (11)

where E1 is the energy of one of the outgoing electrons
(with the energy of the remaining electron defined through
energy conservation), and α is the angle in the hyperspher-
ical plane between the two outgoing momenta vectors k1

and k2. The SDCS for electron-impact ionization of helium
for several impact energies is presented in Figure 2 [51].
The SDCS is compared with absolute measurements from
the CSU Fullerton group [72]. The agreement between the
calculations and measurements is excellent. At these low
impact energies, the SDCS exhibits a flat shape. At larger
impact energies, the SDCS becomes more ‘U’-shaped [51],
which is a result of the preference of one of the outgoing
electrons to carry away most of the excess energy.

The triple differential cross section (TDCS) is given by

d3σ

dE1dΩ1dΩ2
=

wt

lt + 1
π

4k2
0

1
k1k2

∑
S

(2S + 1)

×
∫ ∞

0

dk1

∫ ∞

0

dk2 δ

(
α− tan−1 k2

k1

)

×
∣∣∣∣∣
∑
L

iL
√

2L+ 1
∑
l1l2

(−i)l1+l2ei(σl1+σl2 )

× PLS
l1l2(k1, k2, T )Yl1l2(k̂1, k̂2)

∣∣∣∣∣
2

, (12)
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where in this case α is the angle in the hyperspheri-
cal plane between the two outgoing momenta vectors k1

and k2, Yl1l2(k̂1, k̂2) is a coupled spherical harmonic de-
fined as

Yl1l2

(
k̂1, k̂2

)
=
∑

m1m2

Cl1l2L
m1m2M

× Yl1m1(θ1, φ1)Yl2m2(θ2, φ2) (13)

and σl is the Coulomb phase shift. If scattering from a
multi-electron target is considered, one must also include
the distorted-wave phase shift in equation (12). Double
differential cross sections in energy and angle may be ob-
tained by integrating the triple differential cross section
over one of the outgoing electron solid angles Ω.

Double and triple differential cross sections for
electron-impact ionization of H have been calculated for
various incident electron energies and a range of outgoing
electron angles and energies [73,74]. Generally good agree-
ment is found between the TDCC calculations and mea-
surement, and also with CCC and ECS non-perturbative
calculations. For electron-impact single ionization of He,
TDCC calculations have also been completed for a wide
range of electron kinematics [51,75–78] and compared with
a variety of experimental results, as well as CCC calcula-
tions and perturbative distorted-wave calculations. The
TDCC results generally agree very well with almost all of
the experimental data.

Figure 3 shows an example of the comparison between
the TDCC calculations and the measurements made by
the Manchester group [76]. The geometries employed by
the Manchester group are unique in that a movable inci-
dent electron “gun” is used, with the outgoing electrons
detected in a plane. The results shown in Figure 3 are for
equal energy outgoing electrons as a function of the an-
gle ξ, where 2ξ is the angle between the outgoing electrons,
all for different gun angles ψ. This out-of-plane geometry
is markedly different from the more standard (e, 2e) TDCS
measurements, which are often made for coplanar geome-
tries (all electrons lie in a common plane), where the de-
tection angle of one electron is fixed and the cross section
measured as a function of the second electron angle. The
Manchester detection geometries are highly symmetric,
with only singlet channels contributing to the TDCS, and
revealed an unexpected deep minimum in early measure-
ments [79] of the TDCS from He. This feature is not linked
to selection rules or electron-electron repulsion, which is
often the cause of zeros in the TDCS in other related prob-
lems. The deep minimum is well reproduced by the TDCC
calculations (where the relative measurements are normal-
ized to the TDCC calculations), and further analysis [76]
shows that interference between the contributing partial
waves is linked to the deep minimum feature. Recently,
the presence of a vortex in the two-electron continuum
wavefunction [80,81] was postulated as a further reason
for this unexpected minimum in this cross section.
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Fig. 3. Triple differential cross sections for electron-impact sin-
gle ionization of helium at three incident electron energies as
labeled, for equal energy sharing outgoing electrons. The calcu-
lations were made at different gun angles ψ of the Manchester
experimental set-up, where the gun angle is the angle between
the incident electron beam and the plane in which the outgoing
electrons (separated by an angle 2ξ) move. We compare with
the relative measurements of [79], which are normalized to the
TDCC calculations at the peak of the cross section.

2.2 Single ionization of small molecules

Application of the TDCC approach to electron-impact
ionization of diatomic molecules has been explored in
recent years. Since diatomic molecules break the spher-
ical symmetry that was exploited in TDCC studies of
atomic ionization, we choose to now expand the total elec-
tronic wavefunction over rotation functions φ, with the
remaining coordinates (r, θ) discretized on a lattice [10].
This choice requires significantly more computational re-
sources for electron-molecule calculations compared to the
electron-atom calculations, since one must now represent
the four coordinates (r1, θ1, r2, θ2) on a grid in the molec-
ular case, compared to the two coordinates (r1, r2) that
are represented on a grid in the atomic case.

However, the basic structure of TDCC calculations for
electron-molecule scattering is quite similar to the atomic
case. We solve the same time-dependent Schrödinger equa-
tion as represented in equation (1), but in the molecular
case the Hamiltonian is now given by

Hmol =
2∑

i=1

⎛
⎜⎜⎝−1

2
∇2

i −
∑
±

Z√
r2i +

1
4
R2 ± riR cos θi

⎞
⎟⎟⎠

+
1

|r1 − r2| , (14)
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where R is the internuclear distance, and Z is the charge
on each nucleus. The total electronic wavefunction is ex-
panded in rotational functions for each total angular mo-
mentum projection about the internuclear axis, M , and
total spin angular momentum, S:

ΨMS(r1, r2, t) =
∑

m1m2

PMS
m1m2

(r1, θ1, r2, θ2, t)
r1r2

√
sin θ1

√
sin θ2

× Φm1(φ1)Φm2 (φ2), (15)

where Φm(φ) = eimφ√
2π

and M = m1 +m2. Upon substitu-
tion of Ψ into the time-dependent Schrödinger equation,
we obtain the following set of time-dependent close-
coupled partial differential equations for each MS sym-
metry [10,82]:

i
∂PMS

m1m2
(r1, θ1, r2, θ2, t)
∂t

= Tm1m2(r1, θ1, r2, θ2)

× PMS
m1m2

(r1, θ1, r2, θ2, t)

+
∑

m′
1m′

2

V M
m1m2,m′

1m′
2
(r1, θ1, r2, θ2)

× PMS
m′

1m′
2
(r1, θ1, r2, θ2, t), (16)

where

Tm1m2(r1, θ1, r2, θ2) =
2∑

i=1

⎛
⎜⎜⎝K(ri) +K(ri, θi)

+
m2

i

2r2i sin2 θi

−
∑
±

Z√
r2i +

1
4
R2 ± riR cos θi

⎞
⎟⎟⎠ , (17)

and K are kinetic energy operators [82]. The coupling op-
erator is given by:

V M
m1m2,m′

1m′
2
(r1, θ1, r2, θ2) =

∑
λ

(r1, r2)λ
<

(r1, r2)λ+1
>

∑
q

(λ− |q|)!
(λ+ |q|)!

× P
|q|
λ (cos θ1)P

|q|
λ (cos θ2)

×
∫ 2π

0

dφ1

∫ 2π

0

dφ2 Φm1(φ1)Φm2 (φ2)

× eiq(φ2−φ1)Φm′
1
(φ1)Φm′

2
(φ2), (18)

where P |q|
λ (cos θ) is an associated Legendre function. As

in the atomic case, if we wish to consider multi-electron
molecular targets, we must add potential terms to the sin-
gle particle operator Tm1m2(r1, θ1, r2, θ2) of equation (17).
For electron scattering from H2, these additional potential
terms can be represented by direct and exchange potential

contributions [83], in a similar way to which the electron
scattering from He was calculated, as discussed earlier.

The initial condition for the solution of the TDCC
equations (Eq. (16)) for electron scattering from a one-
electron homonuclear diatomic molecule may be given by:

PMS
m1m2

(r1, θ1, r2, θ2, t = 0)

=

√
1
2
[
Gk0l0m1(r1, θ1)Pnlm2(r2, θ2)

+ (−1)SPnlm1(r1, θ1)Gk0l0m2(r2, θ2)
]
, (19)

where Pnlm(r, θ) is a bound radial and angular wavefunc-
tion for a one-electron molecule, and Gk0l0m is a Gaussian
wavepacket for an incident energy k2

0/2 and angular mo-
mentum l0. It was found that implicit time propagation
methods [10] were more efficient in the molecular case,
compared to an explicit time propagator. This is due to
the need for a very small time step in the explicit time
propagation due to the discretization of the orbital an-
gular momentum on the grid. The implicit propagator
can employ much larger time steps, and is more efficient
even though the matrix inversions required by an im-
plicit method make each time step slower than the explicit
approach.

The total ionization cross section for the electron single
ionization of a one-electron molecule is given by:

σion =
wt

lt + 1
π

4k2
0

∫ ∞

0

dk1

∫ ∞

0

dk2

∑
S

∑
l0

∑
M

∑
l1l2

∑
m1m2

× (2S + 1)
∣∣∣P l0MS

l1m1l2m2
(k1, k2, T )

∣∣∣2 , (20)

where P l0MS
l1m1l2m2

(k1, k2, T ) is the wavefunction which re-
sults after projection of the four-dimensional radial and
angular wavefunctions onto products of one-electron con-
tinuum states after propagation to a suitable time T ,
given by

P l0MS
l1m1l2m2

(k1, k2, T ) =
∫ ∞

0

dr1

∫ π

0

dθ1

∫ ∞

0

dr2

∫ π

0

dθ2

× Pk1l1|m1|(r1, θ1)Pk2l2|m2|(r2, θ2)

× P l0MS
m1m2

(r1, θ1, r2, θ2, t = T ).
(21)

TDCC calculations for the electron-impact ionization
of H+

2 [82] were found to be in excellent agreement
with measurements [84]. For electron-impact ionization
of H2 [83], TDCC calculations were also in good agree-
ment with measurement [85] as well as with RMPS calcu-
lations [16]. More recently, TDCC calculations have also
been performed for electron-impact ionization of the larger
molecule Li2 [86].
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Fig. 4. Triple differential cross sections for electron-impact single ionization of H2 at two incident electron energies as labeled, for
equal energy sharing outgoing electrons [88]. The calculations were made at a gun angle ψ = 90◦ (i.e. the perpendicular geometry)
of the Manchester experimental set-up. The upper panels compare the relative measurements [87] (which are normalized to the
calculations) with TDCC calculations averaged over all orientations. The lower panels show TDCC calculations made at specific
orientations as indicated: middle panels show calculations made at (θN = 0◦, φN = 0◦), along the z-axis, and the lower panels
show calculations made at (θN = 90◦, φN = 0◦), perpendicular to the z-axis.

As in atomic ionization, we may define energy and an-
gular differential cross sections for molecular ionization.
The single differential cross section for electron-impact
ionization of a diatomic molecule can be written as

dσ

dE1
=

wt

lt + 1
π

4k2
0

1
k1k2

∑
S

(2S + 1)

×
∫ ∞

0

dk1

∫ ∞

0

dk2 δ

(
α− tan−1 k2

k1

)

×
∑
l0

+l0∑
M=−l0

∑
l1l2

∑
m1m2

∣∣∣P l0MS
l1m1l2m2

(k1, k2, T )
∣∣∣2 . (22)

The triple differential cross section may be expressed as

d3σ

dE1dΩ1dΩ2
=

wt

lt + 1
π

4k2
0

1
k1k2

∑
S

(2S + 1)

×
∫ ∞

0

dk1

∫ ∞

0

dk2 δ

(
α− tan−1 k2

k1

)
|M|2, (23)

where k0 is the incident electron’s momentum and k1

and k2 are the outgoing electron momenta (ejected into
solid angles Ω1,2). For diatomic molecules, where the
z-axis is defined along the internuclear direction, and the

incoming electron beam is oriented at angles (θk, φk) with
respect to the z-axis,

M =
∑
l0

+l0∑
M=−l0

il0Y ∗
l0M (θk, φk)

×
∑
l1l2

∑
m1m2

(−i)l1+l2 ei(σl1+σl2 )

× P l0MS
l1m1l2m2

(k1, k2, T )Yl1m1(k̂1)Yl2m2(k̂2)δm1+m2,M .

(24)

Our TDCS expression defined by equations (23) and (24)
is given in the molecular frame. To compare with experi-
ment, a transformation must be made into the Laboratory
frame. The TDCS for molecular ionization is dependent
on the angles between the incoming electron beam and
the molecular axis, or equivalently, to the angle between
the molecular axis and the outgoing electrons. This depen-
dence has no analogue in atomic ionization. The molecular
orientation has been shown to have a strong effect on the
TDCS, as was demonstrated recently for H2 [76,87,88].
Figure 4 shows this dependence for two incident energy
cases.

In the upper panels of Figure 4 we show H2 TDCS
measurements in the perpendicular plane for two sets of
outgoing electron energies as indicated. The TDCC calcu-
lations are in excellent agreement with experiment and
clearly show the central minimum found previously at
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these energies [89,90]. In the middle and lower panels we
present TDCC calculations for the same geometries where
now the molecular orientation is fixed at θN = 0◦, φN = 0◦
and θN = 90◦, φN = 0◦, respectively. For cases where the
molecule is aligned along the z-axis (i.e. along the incom-
ing electron beam), the central minimum in the TDCS
disappears. For the E1 = E2 = 10 eV case (left-hand-side
of Fig. 4), the TDCS is flat in the central region, and at
the lower energies a small maximum is found. The two
side peaks (near ξ = 60◦ and 120◦) remain. This can be
understood since the two outgoing electrons have little
probability of colliding between the nuclei, since the ini-
tially bound electron is constrained by the fixed molecule
position. The electron-electron collision is most likely to
occur in a region where the attractive force from the nu-
clei is substantial, allowing greater backscatter and so a
larger cross section in the ξ = 90◦ region.

For cases where the molecule is perpendicular to the
incoming beam (θN = 90◦, φN = 0◦, lower panels), the
TDCS is quite different from the averaged case. For 10 eV
outgoing electrons, the dip in the TDCS is very pro-
nounced, but for the 5 eV outgoing electron case, this
dip has turned into a maximum in the central region. At
even lower energies (not shown), we find that this central
peak completely dominates the cross section, resulting in
a TDCS which is quite He-like. This trend appears to indi-
cate that post-collision interaction (PCI) begins to influ-
ence the TDCS shape for the 5 eV outgoing electrons, and
as the electron energy decreases, PCI dominates the shape
of the TDCS. The electron-electron interaction pushes the
electrons apart so that their preferred escape direction is
back-to-back. This also suggests that the Wannier region
may extend somewhat further out in energy for oriented
molecules than was previously found for the randomly ori-
ented molecular case [90]. Experimental investigations are
in progress to measure the triple differential cross sections
from oriented H2.

2.3 Double ionization of small atoms

The TDCC approach has also been extended to treat three
active electrons, which is required to calculate electron-
impact double ionization of two-electron systems, as well
as electron-impact ionization-excitation cross sections.
Extension to three active electrons results in a signifi-
cantly more complicated calculation compared to a two
active electron case, as well as a much more computation-
ally intensive problem. The complications are due to the
large number of coupled channels which arise due to the
coupling of three active electrons, which is also further
complicated since the spatial and spin components of the
three-electron wavefunction do not separate. This latter
point also complicates the projection techniques used to
extract probabilities for the many excitation and ioniza-
tion processes now possible.

The time-dependent Schrödinger equation for electron
scattering from a two-electron atom is given by:

i
∂Ψ(r1, r2, r3, t)

∂t
= HatomΨ(r1, r2, r3, t), (25)

where the non-relativistic Hamiltonian for the scattering
system is given by:

Hatom =
3∑

i=1

(
−1

2
∇2

i −
Z

ri

)
+

3∑
i<j=1

1
|ri − rj | . (26)

The total electronic wavefunction is expanded in coupled
spherical harmonics for each total orbital angular momen-
tum, L, and total spin angular momentum, S:

ΨLS(r1, r2, r3, t) =
∑
l1l2

∑
Ll3

PLS
l1l2Ll3

(r1, r2, r3, t)
r1r2r3

×
∑

Mm3

CL l3 L
M m3 0

∑
m1m2

Cl1 l2 L
m1m2M

× Yl1m1(r̂1)Yl2m2(r̂2)Yl3m3(r̂3). (27)

Upon substitution of Ψ into the time-dependent
Schrödinger equation, we obtain the following set of time-
dependent close-coupled partial differential equations for
each LS symmetry [10,91]:

i
∂PLS

l1l2Ll3
(r1, r2, r3, t)
∂t

= Tl1l2l3(r1, r2, r3)P
LS
l1l2Ll3(r1, r2, r3, t)

+
∑

l′1l′2L′l′3

3∑
i<j=1

V L
l1l2Ll3,l′1l′2L′l′3

(ri, rj)PLS
l′1l′2L′l′3

(r1, r2, r3, t),

(28)

where

Tl1l2l3(r1, r2, r3) =
3∑

i=1

(
−1

2
∂2

∂r2i
+
li(li + 1)

2r2i
− Z

ri

)
,

(29)
and the V L

l1l2Ll3,l′1l′2L′l′3
(ri, rj) are two-electron coupling

operators [10].
The initial condition for the solution of the TDCC

equations (Eq. (28)) for electron scattering from a two-
electron atom may be given by:

PL
l1l2Ll3(r1, r2, r3, t = 0)

=
∑
l′1,l′2

P̄L′
l′1l′2

(r1, r2)Gk0l′3(r3)δl1,l′1δl2,l′2δl3,l′3δL,L′, (30)

where P̄L′
l′1l′2

(r1, r2) with L′ = 0 and l′1 = l′2 = l are
the ground-state radial wavefunctions for the two-electron
atom, obtained by relaxation of the two-electron TDCC
equations in imaginary time. Probabilities for all the many
collision processes are obtained by t → ∞ projection onto
fully antisymmetric spatial and spin wavefunctions. As
an example, for electron double ionization of the ground
state of the helium atom, the partial collision probability
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PLS
l1l2LSl3(k1, k2, k3, t) =

∣∣∣∣∣
∑
L′
δL,L′QaR(123, t)

−
∑
L′

(−1)l2+l3+L+L′√
(2L+ 1)(2L′ + 1)

{
l2 l1 L

l3 L L′

}
QbR(132, t)

−
∑
L′

(−1)l1+l2−L′
δL,L′QcR(213, t)

+
∑
L′

(−1)l1+l2+L
√

(2L+ 1)(2L′ + 1)

{
l2 l1 L

l3 L L′

}
QcR(312, t)

+
∑
L′

(−1)l2+l3+L′√
(2L+ 1)(2L′ + 1)

{
l1 l2 L

l3 L L′

}
QbR(231, t)

−
∑
L′

√
(2L+ 1)(2L′ + 1)

{
l1 l2 L

l3 L L′

}
QaR(321, t)

∣∣∣∣∣
2

, (31)

is given by:

see equation (31) above,

where

R(ijk, t) =
∫ ∞

0

dr1

∫ ∞

0

dr2

∫ ∞

0

dr3

× Pk1l1(ri)Pk2l2(rj)Pk3l3(rk)PL
l1l2L′l3(r1, r2, r3, t). (32)

The Pkl(r) are continuum radial wavefunctions for the
He+ atomic ion and,

Qa =

√
1
2
δS,0 −

√
1
6
δS,1, Qb =

√
2
3
δS,1,

Qc = −
√

1
2
δS,0 −

√
1
6
δS,1, and S =

1
2
.

To guard against the unwanted contribution to the partial
collision probability coming from the continuum correla-
tion part of the two-electron bound wavefunctions, one
may project out the two-electron bound states from the
three-electron time-propagated radial wavefunction and
then project onto all electron momenta ki. Alternatively,
we found that a simple restriction of the sums over the
electron momenta ki, so that the conservation of energy,

Eatom +
k2
0

2
=
k2
1

2
+
k2
2

2
+
k2
3

2
, (33)

was approximately conserved, greatly reduced contamina-
tion from the continuum piece of the two-electron bound
wavefunctions. In addition, this method of restricted mo-
menta sums should become more accurate as the lattice
size increases.

The total cross section for electron double ionization
of a two-electron atom is given by:

σdion =
π

2k2
0

∫ ∞

0

dk1

∫ ∞

0

dk2

∫ ∞

0

dk3

×
∑
LS

(2L + 1)(2S + 1)

×
∑
LS

∑
l1l2l3

∣∣PLS
l1l2LSl3(k1, k2, k3, T )

∣∣2 , (34)

where PLS
l1l2LSl3

(k1, k2, k3, T ) is a three-electron
momentum-space wavefunction obtained by projec-
tion of the coordinate-space wavefunctions at a final
time T following equations (31) and (32). The first three-
electron TDCC calculations, building on earlier model
calculations [92], were performed for electron-impact dou-
ble ionization of He [91] where the total double ionization
cross sections were in good agreement with measurements
made by the Belfast group [53]. Ionization-excitation
total cross sections were also reported [91]. The double
ionization cross sections were later extended to higher
impact energies [93]. Total ionization cross sections were
then calculated for electron-impact double ionization
of H− [94], and were able to distinguish between two
sets of conflicting measurements, as shown in Figure 5.
The TDCC calculations were in excellent agreement with
the measurements of [95], and around a factor of 5 lower
than the older measurements of [96]. Recently, the TDCC
method has been used to calculate electron-impact double
ionization of Be-like targets [97,98] and of Mg [99]. These
calculations were made by including direct and local
exchange potential operators in the one-electron terms
given by equation (29) to represent the interaction of the
frozen core with the active electrons.

As previously for single ionization, one can obtain en-
ergy and angular differential cross section for electron-
impact double ionization. The double energy differen-
tial cross section for electron-impact double ionization
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Fig. 5. Electron-impact double ionization cross section from
H−. The time-dependent close-coupling calculations (solid
squares) [94] are compared with the measurements of [95]
(diamonds) and of [96] (circles).

is given by:

d2σ

dE2dE3
=

π

2k2
0

1
k1k2k3

√
k2
1 + k2

2

∑
LS

(2L + 1)(2S + 1)

×
∫ ∞

0

dk1

∫ ∞

0

dk2

∫ ∞

0

dk3

× δ

(
α− tan−1 k2

k1

)
δ

(
β − tan−1 k3√

k2
1 + k2

2

)

×
∑

l1,l2,l3,L,S

1
6

6∑
ijk

|PLS
l1l2LSl3(ki, kj , kk, T )|2, (35)

where α is an angle in the (k1, k2) hyperspherical plane
and β is an angle in the plane perpendicular to the (k1, k2)
hyperspherical plane, both defined from 0 to π

2 radians.
The pentuple energy and angle differential cross sec-

tion for electron-impact double ionization is given by:

d5σ

dE2dE3dΩ1dΩ2dΩ3
=

π

2k2
0

1
k1k2k3

√
k2
1 + k2

2

×
∑
S

(2S + 1)
∫ ∞

0

dk1

∫ ∞

0

dk2

∫ ∞

0

dk3

× δ

(
α− tan−1 k2

k1

)
δ

(
β − tan−1 k3√

k2
1 + k2

2

)

×
∑
S

1
6

6∑
ijk

∣∣∣∣∑
L
iL
√

2L + 1

×
∑

l1,l2,l3,L

(−i)l1+l2+l3 ei(σl1 (ki)+σl2(kj)+σl3 (kk))

× PLS
l1l2LSl3(ki, kj , kk, T )Yl1l2Ll3L(Ωi, Ωj , Ωk)

∣∣∣∣
2

, (36)

where σl is the Coulomb phase shift and Yl1l2Ll3L is a
coupled product of three spherical harmonics.

To date, only one set of calculations for the differential
cross sections resulting from electron-impact double ion-
ization of He has been reported [100], for an incident elec-
tron energy of 106 eV. The double energy differential cross
sections were found to be qualitatively similar to the sin-
gle energy differential cross sections calculated for single
ionization. The pentuple angular differential cross sections
(at equal energy sharing between all three outgoing elec-
trons) were compared to recent reaction microscope mea-
surements [101], and reasonable qualitative agreement was
found. Further measurements are available at smaller im-
pact energies [102], although TDCC calculations at such
energies require large mesh sizes and propagation times
for convergence.

3 Photoionization of small atoms
and molecules

3.1 Single-photon double ionization
of two-electron atoms

The time-dependent close-coupling method has been ap-
plied to numerous problems in double photoionization of
two-electron atoms and molecules. Two formulations of
the TDCC method for two-electron systems subject to
an electromagnetic field have been given. The first for-
mulation describes a two-electron atom in a strong time-
varying electromagnetic field and the Schrödinger equa-
tion can be written as

i
∂Ψ(r1, r2, t)

∂t
= (Hatom +Hrad)Ψ(r1, r2, t), (37)

where the non-relativistic Hamiltonian for the atom is
given by equation (2) and the Hamiltonian for a linearly
polarized radiation field is given by:

Hrad = E(t) cosωt
2∑

i=1

ri cos θi, (38)

where E(t) is the electric field amplitude and ω the radia-
tion field frequency. Using similar expansions over coupled
spherical harmonics as defined in Section 2.1, we obtain
the following set of time-dependent close-coupled partial
differential equations [103]:

i
∂PLS

l1l2
(r1, r2, t)
∂t

= Tl1l2(r1, r2)P
LS
l1l2(r1, r2, t)

+
∑
l′1l′2

V L
l1l2,l′1l′2

(r1, r2)PLS
l′1l′2

(r1, r2, t)

+
∑
L′

∑
l′1l′2

WLL′
l1l2,l′1l′2

(r1, r2, t)PL′S
l′1l′2

(r1, r2, t), (39)
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where now

WLL′
l1l2,l′1l′2

(r1, r2, t) = δl2,l′2(−1)l2

×
√

(2l1 + 1)(2l′1 + 1)(2L+ 1)(2L′ + 1)

× r1E(t) cosωt

(
l1 1 l′1
0 0 0

)(
L 1 L′

0 0 0

){
l1 l2 L

L′ 1 l′1

}

+ δl1,l′1(−1)l1

√
(2l2 + 1)(2l′2 + 1)(2L+ 1)(2L′ + 1)

× r2E(t) cosωt

(
l2 1 l′2
0 0 0

)(
L 1 L′

0 0 0

){
l2 l1 L

L′ 1 l′2

}
. (40)

These equations are very similar to the strong-field equa-
tions solved by the Belfast group using the HELIUM
code [104,105], where strong-field double ionization of He
for high-intensity, long-wavelength radiation is examined.

Alternatively, the time-dependent wavefunction for a
two-electron atom may be divided into two parts:

Ψ(r1, r2, t) = ψ0(r1, r2) e−iE0t + ψ(r1, r2, t), (41)

where ψ0 is the exact eigenfunction and E0 is the exact
eigenenergy of the time-independent atomic Hamiltonian.
Substitution into the time-dependent Schrödinger equa-
tion yields:

i
∂ψ(r1, r2, t)

∂t
= (Hatom +Hrad)ψ(r1, r2, t)

+Hradψ0(r1, r2) e−iE0t. (42)

In the weak-field perturbative limit, which is suitable
for computing single photon absorption processes, one
may solve the somewhat simpler time-dependent equation
given by:

i
∂ψ(r1, r2, t)

∂t
= Hatomψ(r1, r2, t)

+Hradψ0(r1, r2) e−iE0t. (43)

Upon substitution of coupled spherical harmonic expan-
sions for both ψ and ψ0 into equation (43), we obtain the
following set of time-dependent close-coupled partial dif-
ferential equations [103]:

i
∂PLS

l1l2
(r1, r2, t)
∂t

= Tl1l2(r1, r2)P
LS
l1l2(r1, r2, t)

+
∑
l′1l′2

V L
l1l2,l′1l′2

(r1, r2)PLS
l′1l′2

(r1, r2, t)

+
∑
l′1l′2

WLL0
l1l2,l′1l′2

(r1, r2, t)P̄L0S
l′1l′2

(r1, r2) e−iE0t. (44)

The similarities between equations (39), (44) and (3) allow
very similar numerical approaches to be used in obtaining

the wavefunction at some final time. An important dif-
ference is that the selection rules of the electron-photon
interaction (in the dipole approximation) limit the number
of L values that need to be retained in the close-coupled
equations; for single photon ionization of a two-electron
atom with an L0 = 0 ground state, only the L = 1 term is
required. If the initial state is not L0 = 0, only two terms
are required (L = L0 ± 1). The initial condition for the
solution of the TDCC equations given by equation (39) is

PLS
l1l2(r1, r2, t = 0) =

∑
l1l2

P̄L0S
l′1l′2

(r1, r2)δl1l′1δl2l′2δLL0 , (45)

and the initial condition for the solution of weak-field
TDCC equations given by equation (44) is

PLS
l1l2(r1, r2, t = 0) = 0. (46)

The ground-state wavefunction P̄L0S
l1l2

(r1, r2) and corre-
sponding energy E0 are obtained by relaxation of the
time-dependent Schrödinger equation (e.g. Eq. (39) with
no field term present) in imaginary time. This produces
the lowest eigenstate of the given symmetry on the nu-
merical grid used. One may construct other initial states
(e.g. a first excited state) by suitable orthogonalization
procedures after construction of the ground state.

The projection methods used to extract scattering
probabilities are very similar to those used in the elec-
tron scattering examples discussed in the previous sec-
tion. We again may make use of equation (9) to obtain a
momentum-space wavefunction PLS

l1l2
(k1, k2, T ). If one uses

the weak-field version of the TDCC approach (Eq. (44)),
the total double ionization cross section can be written as

σdion =
ω

I

∂

∂t

∫ ∞

0

dk1

∫ ∞

0

dk2

∑
l1l2

|PLS
l1l2(k1, k2, T )|2.

(47)
The total double photoionization cross section of He
and the double-to-single ionization ratio were some of
the earliest sets of TDCC calculations [103], and both
quantities were found to be in good agreement with
measurement [106,107], as well as a range of other
close-coupling calculations [15,25,108]. Total double pho-
toionization cross sections near threshold were later
examined [109] and found to be in good agreement with
Wannier threshold laws.

TDCC calculations have also been presented for other
two-electron atomic systems, such as H− [110] and Li+ in
its ground and first excited states [111], as well as sev-
eral other He-like ions [112]. The TDCC approach was
also extended to examine other quasi two-electron sys-
tems, starting with the double photoionization of Be [113],
by using similar core VD and VX potentials as described
in Section 2.1. Total cross sections were in good agree-
ment with convergent close-coupling calculations [28], and
with later measurements [114]. TDCC calculations for the
double photoionization of Li and Mg were also recently
reported [115,116].
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The momentum space wavefunction also allows us to
define cross sections differential in energy of the outgoing
electrons, using

dσ

dE1
=
ω

I

∂

∂t

1
k1k2

∫ ∞

0

dk1

∫ ∞

0

dk2 δ

(
α− tan−1 k2

k1

)

×
∑
l1l2

∣∣PLS
l1l2(k1, k2, T )

∣∣2 , (48)

where E1 is the energy of one of the outgoing electrons
(with the energy of the remaining electron defined through
energy conservation). The SDCS for double photoioniza-
tion of He was presented in [117,118]. The usual shape
of this cross section is a ‘U’-shaped function, symmet-
ric about E/2 (where E = E1 + E2 is the excess energy
available to the outgoing electrons). The SDCS becomes
flatter as the excess energy is decreased. At high photon
energies [119], the SDCS becomes increasingly ‘U’-shaped,
with almost no probability of ejection of two equal energy
electrons. This is due to the dominance of the “shake-
off” mechanism in double photoionization at large photon
energies.

The triple differential cross section for double pho-
toionization of two-electron atoms can be written as

d3σ

dE1dΩ1dΩ2
=
ω

I

∂

∂t

1
k1k2

∫ ∞

0

dk1

∫ ∞

0

dk2

× δ

(
α− tan−1 k2

k1

)

×
∑
l1l2

∣∣∣(−i)l1+l2 ei(σl1+σl2 )PLS
l1l2(k1, k2, T )Yl1l2(k̂1, k̂2)

∣∣∣2 ,
(49)

where in this case α is the angle in the hyperspheri-
cal plane between the two outgoing momenta vectors k1

and k2, Yl1l2(k̂1, k̂2) is a coupled spherical harmonic,
and σl is the Coulomb phase shift. As before, if scattering
from a target with a frozen electron core is considered,
one must also include the distorted-wave phase shift in
equation (49). Double differential cross sections in angle
may be obtained by integrating the triple differential cross
section over one of the outgoing electron solid angles Ω.

The first TDCC calculations of the TDCS for dou-
ble photoionization of He were presented in [117], where
very good agreement with the COLTRIMS measurements
of [120] was demonstrated for a range of outgoing electron
angles and energies. Later, TDCC calculations [118] were
also shown to be in good agreement with a variety of co-
incidence measurements [121–124] at various excess ener-
gies. Double and triple differential cross sections for He at
high photon energies (E = 450 eV) [119] were also found
to be in good agreement with later COLTRIMS measure-
ments [125,126]. A selection of these TDCS calculations
are presented in Figure 6 where the variation of the an-
gular distribution as a function of the outgoing electron
energy sharing is shown.

Triple differential cross sections from the 1s2s 1,3S
states of He have also been examined [127], where more
structure was observed in the TDCS compared to simi-
lar distributions from the He ground state. These struc-
tures were attributed to ionization of two electrons from
different subshells. The angular distributions from dou-
ble photoionization of Be [113] were also contrasted with
those from He. Good agreement was observed between
these angular distributions and those obtained from CCC
calculations [28]. Later studies examined the effect of
the increasing nuclear charge on the angular distribu-
tions from He-like ions [112]. More recently, angular dis-
tributions have also been computed for the double pho-
toionization of Li using the TDCC method [29,30], and
recoil ion distributions were found to be in good agree-
ment with measurements [128]. The TDCC approach has
also been extended to examine non-dipole contributions
of the photon-electron interaction [129]. Addition of the
quadrupole interaction was shown to result in only a small
increase in the total double photoionization cross section,
but made a significant difference to the triple differen-
tial cross sections. Dipole-only calculations had confirmed
the selection rules for double photoionization predicted by
Maulbetsch and Briggs [130], where back-to-back electron
ejection was forbidden due to the symmetry of the outgo-
ing electron pair. Inclusion of the quadrupole interaction
however, allows back-to-back emission, since the symme-
try of the ejected electron pair has changed. This effect
was predicted [129] to be measurable at photon energies
of 800 eV or more, although the very small cross sections
make such a measurement very challenging.

3.2 Two-photon double ionization of He

For cases where more than one photon is absorbed, the
“strong-field” version of the TDCC approach is suitable.
If one uses the strong-field version of the TDCC approach
(Eq. (39)), the total double photoionization cross section is

σdion =
(ω
I

)n 1
Teff

∫ ∞

0

dk1

∫ ∞

0

dk2

∑
l1l2

|PLS
l1l2(k1, k2, T )|2,

(50)
where n is the number of photons absorbed, and Teff is
the effective pulse duration. Energy and angular differen-
tial cross sections for strong-field ionization can also be
generated using analogous expressions to equations (48)
and (49).

Calculations of the two-photon double ionization rates
of He and H− were presented [131] using the strong-field
time-dependent close-coupling approach. These calcula-
tions were later extended [132] to compute a total cross
section, as well as angular distributions at a photon en-
ergy of 45 eV. Later calculations also examined the an-
gular distributions for a range of photon energies around
45 eV [133]. These calculations initiated a series of similar
time-dependent studies, as well as a few time-independent
studies, of this two-photon double ionization process us-
ing a variety of numerical approaches [38,134–145]. These
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Fig. 6. Polar representation of the triple
differential cross sections for He at an ex-
cess photon energy of 450 eV. The angle
of the first electron is fixed at 0◦. In the
left two panels the fixed electron is the
“slow” electron, with 1 and 30 eV energy,
respectively. In the right two panels the
fixed electron is the “fast” electron, with
449 and 420 eV, respectively. The TDCC
calculations [119] are compared with the
measurements of [125]. Cross sections are
in units of b/sr2eV.

further studies were motivated by some disagreements be-
tween time-dependent and time-independent calculations
of the total cross section. Also, much interest has focused
on the double ionization cross sections as the photon en-
ergy approaches the limit for non-sequential ionization at
54 eV. Free-electron laser (FEL) technology allows mea-
surement of the cross sections and angular distributions
for these processes [146–148], but the few existing mea-
surements of the total cross section are not yet sufficient
to fully benchmark this quantity.

3.3 Single-photon double ionization
of two-electron molecules

In recent years the TDCC method has also been ex-
tended to examine double photoionization of two-electron
diatomic molecules. This extension has been motivated by
the impressive experimental progress in measuring the an-
gular distributions for this double photoionization process,
which has uncovered striking new physical phenomena
unique to molecular break-up, such as large orientation
effects [149,150], and dependence on the kinetic energy
release (KER), or internuclear separation, of the molecule
at the time of ionization [151,152].

We employ the formulation of the time-dependent
Schrödinger equation in the weak-field perturbative limit,
and write the Schrödinger equation as

i
∂Ψ(r1, r2, t)

∂t
= (Hmol +Hrad)Ψ0(r1, r2, t) e−iE0t, (51)

where Hmol is defined by equation (14) and Hrad is again
defined by equation (38) for a linearly polarized field. Sub-
stituting the rotational function expansions equation (15)
into equation (51), we obtain the following set of time-
dependent close-coupled partial differential equations [10]:

i
∂PMS

m1m2
(r1, θ1, r2, θ2, t)
∂t

= Tm1m2(r1, θ1, r2, θ2)P
MS
m1m2

(r1, θ1, r2, θ2, t)

+
∑

m′
1m′

2

V M
m1m2,m′

1m′
2
(r1, θ1, r2, θ2)PMS

m′
1m′

2
(r1, θ1, r2, θ2, t)

+
∑

m′
1m′

2

WMM0
m1m2,m′

1m′
2
(r1, θ1, r2, θ2, t)

× P̄M0S
m′

1m′
2
(r1, θ1, r2, θ2) e−iE0t, (52)

where Tm1m2(r1, θ1, r2, θ2) is defined by equation (17), and
for linear polarization

WMM ′
m1m2,m′

1m′
2
(r1, θ1, r2, θ2, t)

= E(t) cosωt
2∑

i=1

ri cos θiδmi,m′
i
, (53)
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while for circular polarization

WMM ′
m1m2,m′

1m′
2
(r1, θ1, r2, θ2, t) =

E(t)√
2

cosωt
2∑

i=1

ri sin θi

×
∫ 2π

0

dφiΦmi(φi) eiφiΦm′
i
(φi). (54)

The initial condition for the solution of the TDCC equa-
tions (Eq. (52)) for single photon scattering from a two-
electron homonuclear diatomic molecule is given by:

PMS
m1m2

(r1, θ1, r2, θ2, t = 0) = 0. (55)

The expansion functions P̄M0S
m1m2

(r1, θ1, r2, θ2) and energy
E0 are obtained by relaxation of the time-dependent
Schrödinger equation for a two-electron molecule in imag-
inary time. The total double photoionization cross section
for a two-electron molecule is given by:

σdion =
ω

I

∂

∂t

∫ ∞

0

dk1

∫ ∞

0

dk2

×
∑
l1l2

∑
m1m2

∣∣PMS
l1m1l2m2

(k1, k2, T )
∣∣2 , (56)

where PMS
l1m1l2m2

(k1, k2, T ) is the wavefunction which re-
sults after projection of the four-dimensional radial and
angular wavefunctions onto products of H+

2 continuum
states after propagation to a suitable time T , given by
equation (21). Calculations of the total cross section
for double photoionization of H2 using a TDCC ap-
proach [153] were found to be in very good agreement
with previous measurements [154].

Single differential cross sections for the double pho-
toionization of a two-electron molecule can be calculated
using

dσ

dE1
=
ω

I

∂

∂t

1
k1k2

∫ ∞

0

dk1

∫ ∞

0

dk2 δ

(
α− tan−1 k2

k1

)

×
∑
l1l2

∑
m1m2

∣∣PMS
l1m1l2m2

(k1, k2, T )
∣∣2 . (57)

The triple differential cross section may be expressed as

d3σ

dE1dΩ1dΩ2
=
ω

I

∂

∂t

1
k1k2

∫ ∞

0

dk1

∫ ∞

0

dk2

× δ

(
α− tan−1 k2

k1

)
|M|2. (58)

For diatomic molecules, where the z-axis is defined along
the internuclear direction, and the polarization axis is ori-
ented at angles (θk, φk) with respect to the z-axis,

M =
∑

M=0,±1

Y ∗
1M (θk, φk)

∑
l1l2

∑
m1m2

(−i)l1+l2 ei(σl1+σl2 )

× PMS
l1m1l2m2

(k1, k2, T )Yl1m1(k̂1)Yl2m2(k̂2)δm1+m2,M .
(59)
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Fig. 7. Polar representation of the H2 TDCS in the coplanar
geometry for three molecular orientations as indicated [152], for
fixed electron angle θ1 = 60◦ and E1 = E2 = 12.5±10 eV. The
left panels show measurements for a KER value of 16 eV, corre-
sponding to an internuclear separation of 1.6 a0, and the right
panels show measurements for a KER value of 24 eV (inter-
nuclear separation of 1.2 a0). The measurements are compared
to TDCC calculations averaged over the molecular orientation
uncertainties; unaveraged TDCC calculations are shown as the
dashed lines.

Our TDCS expression defined by equations (58) and (59)
is given in the molecular frame. As noted earlier, to com-
pare with experiment, a transformation must be made into
the Laboratory frame. The TDCS for molecular ionization
is dependent on the angles between the polarization vec-
tor and the molecular axis, or equivalently, to the angle
between the molecular axis and the outgoing electrons.

The first TDCC calculations of the angular distribu-
tions for double photoionization of H2 [155] were com-
pared to synchrotron measurements [150], and good agree-
ment was found, after the calculations were averaged over
the uncertainties in the molecular orientation angles with
respect to the polarization axis. An example of such a
comparison is shown in Figure 7. Calculations at exact
values of molecular orientations were also found to be in
excellent agreement with ECS calculations [36,156]. Later
TDCC calculations [157] were also in good agreement
with COLTRIMS measurements [151], and showed how
the triple differential cross sections evolve as the num-
ber of field periods increases. More recently, TDCC calcu-
lations at different internuclear separations were able to
shed some light on the “KER” effect in double photoion-
ization of H2 [152], where it was found that interference
between the contributing Σ (M = 0) and Π (M = ±1)
amplitudes gives rise to the strong dependence of the elec-
tron angular distributions on the kinetic energy of the
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outgoing protons that result after Coulomb explosion of
the molecule after double ionization. The TDCC approach
has also been used to uncover new fragmentation patterns
in the double photoionization of H2 [158] which were pre-
dicted by a novel characterization of the outgoing electron
pair. Very recently, an alternative TDCC formulation in
prolate spherical coordinates [159] has also been proposed,
and applied to the same process of double photoionization
of H2. Finally, we also mention that recently several two-
photon double ionization TDCC calculations of H2 have
been reported [160–162]. Such calculations have proven
difficult to converge, and the effects of the pulse shape and
length, as well as the influence of double excited states
of H2, are found to significantly influence the resulting
cross sections.

3.4 Single-photon triple ionization
of three-electron atoms

The TDCC approach has been applied to triple photoion-
ization, that is, ionization of all three electrons by absorp-
tion of a single photon. As in the electron-impact double
ionization of two-electron systems, the extension to three
active electrons results in a significantly more complicated
calculation, as well as a very computationally intensive
problem.

The time-dependent Schrödinger equation for a three-
electron atom in a weak time-varying electromagnetic field
is given by:

i
∂ψ(r1, r2, r3, t)

∂t
= Hatomψ(r1, r2, r3, t)

+Hradψ0(r1, r2, r3) e−iE0t (60)

where the non-relativistic Hamiltonian for the atom is
given by equation (26) and the Hamiltonian for a linearly
polarized radiation field is given by:

Hrad = E(t) cosωt
3∑

i=1

ri cos θi. (61)

Upon substitution of coupled spherical harmonic expan-
sions equation (27) for both ψ and ψ0 into equation (60),
we obtain the following set of time-dependent close-
coupled partial differential equations [10]:

i
∂PLS

l1l2Ll3
(r1, r2, r3, t)
∂t

= Tl1l2l3(r1, r2, r3)P
LS
l1l2Ll3(r1, r2, r3, t)

+
∑

l′1l′2L′l′3

3∑
i<j=1

V L
l1l2Ll3,l′1l′2L′l′3

(ri, rj)PLS
l′1l′2L′l′3

(r1, r2, r3, t),

+
∑

l′1l′2L′l′3

3∑
i=1

WLL0
l1l2Ll3,l′1l′2L′l′3

(ri, t)P̄L0S
l′1l′2L′l′3

(r1, r2, r3)e−iE0t,

(62)

where V L
l1l2Ll3,l′1l′2L′l′3

(ri, rj) are two-electron coupling op-

erators, and WLL0
l1l2Ll3,l′1l′2L′l′3

(ri, t) represents the coupling
of each electron to the electromagnetic field. The initial
condition for these equations is as before

PLS
l1l2Ll3(r1, r2, r3, t = 0) = 0. (63)

The expansion functions P̄L0S
l1l2Ll3

(r1, r2, r3) and energy
E0 are obtained by relaxation of the time-dependent
Schrödinger equation for a three-electron atom in imagi-
nary time. For the Li ground state, orthogonalization pro-
cedures are necessary to prevent the unphysical relaxation
to a 1s3 eigenstate.

The total cross section for triple ionization can be ex-
pressed as

σtion =
ω

I

∂

∂t

∫ ∞

0

dk1

∫ ∞

0

dk2

∫ ∞

0

dk3

×
∑

l1l2LSl3

∣∣PLS
l1l2Ll3(k1, k2, k3, T )

∣∣2 , (64)

where PLS
l1l2Ll3

(k1, k2, k3, T ) is again a three-electron
momentum-space wavefunction obtained by projection of
the coordinate space wavefunction at a final time T follow-
ing equations (31) and (32). The first TDCC calculations
explored the total cross section for the triple photoioniza-
tion of Li [163], where good agreement was found with the
only existing synchrotron measurements [164]. The total
cross sections for Li were later extended, and triple pho-
toionization cross sections were also presented for Be [165].

As in the two-electron case, one may obtain energy
and angular differential cross sections for the triple pho-
toionization process. The double energy differential cross
section can be written as:

d2σ

dE2dE3
=
ω

I

∂

∂t

1
k1k2k3

√
k2
1 + k2

2

×
∫ ∞

0

dk1

∫ ∞

0

dk2

∫ ∞

0

dk3

× δ

(
α− tan−1 k2

k1

)
δ

(
β − tan−1 k3√

k2
1 + k2

2

)

×
∑

l1l2l3LS

1
6

6∑
ijk

∣∣PLS
l1l2LSl3(ki, kj , kk, T )

∣∣2 ,
(65)

where α is an angle in the (k1, k2) hyperspherical plane
and β is an angle in the plane perpendicular to the (k1, k2)
hyperspherical plane, both defined from 0 to π

2 . The en-
ergy differential cross sections for triple photoionization
of Li were previously presented [166], and “cuts” through
the double energy differential distributions were found to
be qualitatively similar to the single energy differential
distributions found in the double photoionization of He.
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Fig. 8. Polar representation of the pentuple differential cross sections for triple photoionization of Li at a photon energy of
300 eV and for E1 = E2 = E3 = 33 eV [167]. Results are presented as a function of θ3 for fixed values of θ1 and θ2. (a) θ1 = 45◦,
θ2 = 135◦; (b) θ1 = 0◦, θ2 = 90◦; (c) θ1 = 45◦, θ2 = 315◦; (d) θ1 = 90◦, θ2 = 270◦. All cross sections are in units of b/(sr3 eV2).

The pentuple energy and angle differential cross sec-
tion for triple photoionization is given by:

d5σ

dE2dE3dΩ1dΩ2dΩ3
=
ω

I

∂

∂t

1
k1k2k3

√
k2
1 + k2

2

×
∫ ∞

0

dk1

∫ ∞

0

dk2

∫ ∞

0

dk3

× δ

(
α− tan−1 k2

k1

)
δ

(
β − tan−1 k3√

k2
1 + k2

2

)

×
∑
S

1
6

6∑
ijk

∣∣∣∣∣
∑

l1l2l3L

(−i)l1+l2+l3ei(σl1 (ki)+σl2 (kj)+σl3 (kk))

× PLS
l1l2LSl3(ki, kj , kk, T )Yl1l2Ll3L(Ωi, Ωj , Ωk)

∣∣∣∣∣
2

, (66)

where σl is a Coulomb phase shift and Yl1l2Ll3L is a cou-
pled product of three spherical harmonics. The integrals
over linear momenta are again restricted so that the total
energy (Eq. (33)) is approximately conserved. A variety
of angular distributions for triple photoionization of Li
were recently presented [167] and the dominant fragmen-
tation channels discussed. An example of the angular dis-
tributions for four equal energy sharing cases is shown in
Figure 8.

4 Ion-impact ionization of small atoms
and molecules

4.1 Ion-impact ionization of small atoms

The time-dependent close-coupling method was first ap-
plied to examine the double ionization of He by fast bare
ion projectiles [168]. The approach is suitable for high in-
cident projectile energies, where charge exchange may be
neglected. The Schrödinger equation for the ionization of
a two-electron atom by a fast bare ion is written as

i
∂Ψ(r1, r2, t)

∂t
= (Hatom +Hproj)Ψ(r1, r2, t), (67)

where the non-relativistic Hamiltonian for the atom is
given by equation (2) and the Hamiltonian representing
the interaction of the fast ion (of charge Zp) with the two
electrons is given by

Hproj = − Zp

|r1 − R(t)| −
Zp

|r2 − R(t)| . (68)

For straight-line motion, the magnitude of the time-
dependent projectile position is given by:

R(t) =
√
b2 + (d0 + vt)2, (69)

where b is an impact parameter, d0 is a starting distance
(d0 < 0), and v is the projectile speed. By again expanding
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the total wavefunction for the two electrons in coupled
spherical harmonics we obtain the following set of close-
coupled partial differential equations

i
∂PLMS

l1l2
(r1, r2, t)
∂t

= Tl1l2(r1, r2)P
LMS
l1l2 (r1, r2, t)

+
∑
l′1l′2

V L
l1l2,l′1l′2

(r1, r2)PLMS
l′1l′2

(r1, r2, t)

+
∑
l′1l′2

WLM,L′M ′

l1l2,l′1l′2
(r1, R(t))PL′M ′S′

l′1l′2
(r1, r2, t)

+
∑
l′1l′2

WLM,L′M ′

l1l2,l′1l′2
(r2, R(t))PL′M ′S′

l′1l′2
(r1, r2, t), (70)

where V L
l1l2,l′1l′2

(r1, r2) is defined by equation (5),

WLM,L′M ′

l1l2,l′1l′2
(r1, R(t)) = −Zpδl2,l′2(−1)l2+L+L′−M

×
√

(2l1 + 1)(2l′1 + 1)(2L+ 1)(2L′ + 1)

×
∑

λ

(−1)λ (r1, R(t))λ
<

(r1, R(t))λ+1
>

(
l1 λ l

′
1

0 0 0

)

×
∑

q

Cλ∗
q (θ, φ)

(
L λ L′

−M q M ′

){
l1 l2 L

L′ λ l′1

}
,

(71)

and

WLM,L′M ′

l1l2,l′1l′2
(r2, R(t)) = −Zpδl1,l′1(−1)l1+l2+l′2−M

×
√

(2l2 + 1)(2l′2 + 1)(2L+ 1)(2L′ + 1)

×
∑

λ

(−1)λ (r2, R(t))λ
<

(r2, R(t))λ+1
>

(
l2 λ l

′
2

0 0 0

)

×
∑

q

Cλ∗
q (θ, φ)

(
L λ L′

−M q M ′

){
l1 l2 L

λ L′ l′2

}
.

(72)

The spherical tensor in equations (71) and (72) is de-
fined by:

Cλ
q (θ, φ) =

√
4π

2λ+ 1
Y λ

q (θ, φ), (73)

where Y λ
q (θ, φ) is a spherical harmomic. Each λ term in

equations (71) and (72) corresponds to a contribution from
the multipole interaction between the fast ion and each
electron. We find that expansions to at least the octopole
term (λ ≤ 3) are required to fully converge the resulting
ionization cross sections.

The initial condition for the solution of the time-
dependent equations (70) is

PLMS
l1l2 (r1, r2, t = 0) = δL,L0δM,M0P̄

L0M0S0
l1l2

(r1, r2), (74)

where P̄L0M0S0
l1l2

(r1, r2) is the ground-state wavefunction
for the two-electron atom, obtained by relaxation of the
time-dependent Schrödinger equation in imaginary time,
in the same manner as described in the photon-atom in-
teraction discussed in Section 3.

To obtain ionization probabilities and cross sections,
we may use projection methods that are very similar
to those described in the previous sections. We em-
ploy an expression similar to equation (9) to obtain
a momentum-space wavefunction PLMS

l1l2
(k1, k2, b, T ) at

some final time T , except that now we must remove the
overlap with the initial ground state. The momentum
space wavefunctions are thus given by

PLMS
l1l2 (k1, k2, b, T ) =

∫ ∞

0

dr1

∫ ∞

0

dr2

× Pk1l1(r1)Pk2l2(r2)P̂
LMS
l1l2 (r1, r2, t = T ), (75)

where P̂LMS
l1l2

(r1, r2, t = T ) is given by

P̂LMS
l1l2 (r1, r2, t = T ) = PLMS

l1l2 (r1, r2, t = T )

− βP̄L0M0S0
l1l2

(r1, r2)δL,L0δM,M0δS,S0, (76)

and β is the overlap of the initial state with the final state,
defined as

β =
∑
l1l2

∫ ∞

0

dr1

∫ ∞

0

dr2P̄
L0M0S0
l1l2

(r1, r2)

× PL0M0S0
l1l2

(r1, r2, t = T ). (77)

The probability for double ionization at a given impact
parameter is then given by

Pdion(v, b) =
∫ ∞

0

dk1

∫ ∞

0

dk2

×
∑

l1,l2,L,M

∣∣PLMS
l1l2 (k1, k2, b, T )

∣∣2 . (78)

The calculation proceeds by repeatedly solving the TDCC
equations for all impact parameters b until the contribu-
tion to the ionization probability from large b values be-
comes small. The total double ionization cross section can
then be written as

σdion(v) = 2π
∫ ∞

0

Pdion(v, b) bdb. (79)

One may also obtain single ionization cross sections by
computing the single ionization probability given by

Psion(v, b) =
∑
nl

∫ ∞

0

dk
∑

l1l2LM

∣∣PLMS
l1l2 (nl, k, b, T )

∣∣2 ,
(80)
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where

PLMS
l1l2 (nl, k, b, T ) =

(∣∣∣∣
∫ ∞

0

dr1

∫ ∞

0

dr2Pnl1(r1)Pkl2 (r2)

× P̂LMS
l1l2 (r1, r2, t = T )δl,l1

∣∣∣∣
2

+
∣∣∣∣
∫ ∞

0

dr1

∫ ∞

0

dr2Pkl1(r1)Pnl2(r2)

× P̂LMS
l1l2 (r1, r2, t = T )δl,l2

∣∣∣∣
2)
. (81)

The resulting total single ionization cross section then
given by

σsion(v) = 2π
wt

lt + 1

∫ ∞

0

Psion(v, b) bdb, (82)

where wt is the occupation number of the initial subshell
with angular momentum lt. The first TDCC ion-impact
calculations were of total cross sections for single and dou-
ble ionization of He by fast α particles [168], and good
agreement was found between the time-dependent calcu-
lations and measurement [169]. Subsequently, single and
double ionization of He by antiproton (p̄) impact was also
investigated [170]. Antiproton impact calculations are par-
ticularly attractive since there is no possibility of charge
exchange, and so calculations may be performed for a
wide range of incident projectile energies. Good agreement
was found between the TDCC single ionization calcula-
tions and measurements [171,172], except at the lowest
impact energies considered. For double ionization, good
agreement between the TDCC double ionization calcu-
lations and measurement [171] was found for almost all
incident energies, and a later, separate TDCC calculation
also demonstrated similar agreement [173]. A more recent
measurement [174] at low energies was also consistent with
the TDCC calculations. It was also found [170] that the
double ionization of He by p̄-impact was twice as large as
proton impact double ionization at a given incident en-
ergy, even though the single ionization cross sections from
both projectiles are quite similar. This finding is presented
in Figure 9 [170].

More recently, total single ionization cross sections
for p̄ impact of H, He, and Li at low impact ener-
gies have been presented [175]. A single-active-electron
time-dependent approach was used, as well as the full
two-electron TDCC approach described here. The single-
active-electron approach was found to be in good agree-
ment with total cross section measurements for H and Li,
but considerably higher than measurement and two-
electron TDCC calculations for He. As the incident energy
increases, the single-active-electron and two-electron time-
dependent calculations are in much better agreement.

One may also compute a variety of differential cross
sections arising from ion-impact single and double ion-
ization. The double differential (in angles of the out-
going electrons) cross section for proton-impact double
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Fig. 9. Weighted probabilities for single (upper) and double
(lower) ionization of He by antiproton (red line) and proton
(black dashed line) impact at 1 MeV impact energy [170].

ionization of helium can be written as

d2σ

dΩ1dΩ2
=
∫ ∞

0

dk1

∫ ∞

0

dk2

∫ ∞

0

2π db b

×
∣∣∣∣∣
∑

l1l2LM

(−i)l1+l2 ei(σl1+σl2 )

× PLMS
l1l2 (k1, k2, b, T )YLM

l1l2 (k̂1, k̂2)

∣∣∣∣∣
2

, (83)

where σl is again the Coulomb phase shift, YLM
l1l2

(k̂1, k̂2)
are coupled spherical harmonics, and integration over all
solid angles and impact parameters b, recovers the total
double ionization cross section. It is straightforward to
compute further cross sections that are also differential
in the energy shared between the outgoing electrons, fol-
lowing the approach used in Section 3. Double ionization
of He by proton impact at 6 MeV incident energy was re-
cently reported [173,176,177], where reasonable agreement
was found between the TDCC calculations and the only
measurements available [178].

Differential cross sections may also be computed for
single ionization by ion impact within the two-electron
TDCC approach [179]. One may construct a function that
depends on the angles of the ejected electron by using
the single-ionization momentum-space wavefunction de-
fined by equation (81). For single ionization leaving the
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i
∂PMS

m1m2(r1, θ1, r2, θ2, t)

∂t
= Tm1m2(r1, θ1, r2, θ2)P

MS
m1m2(r1, θ1, r2, θ2, t)

+
∑

m′
1m′

2

V M
m1m2,m′

1m′
2
(r1, θ1, r2, θ2)P

MS
m′

1m′
2
(r1, θ1, r2, θ2, t)

+
∑

m′
1m′

2M′
WMM′

m1m2,m′
1m′

2
(r1, θ1, Rp, θp, t)P

M′S
m′

1,m′
2
(r1, θ1, r2, θ2, t)

+
∑

m′
1m′

2M′
WMM′

m1m2,m′
1m′

2
(r2, θ2, Rp, θp, t)P

M′S
m′

1,m′
2
(r1, θ1, r2, θ2, t), (88)

ion in a 1s state, this function takes the form

P (k̂, b) =
∑
LM

(−i)L eiσLPLMS
0L (1s, k, b, T )YLM(k̂), (84)

where PLMS
0L (1s, k, b, T ) is defined by equation (81) with

nl ≡ 1s. A (fully) differential cross section, differential
in also the projectile scattering angle (or, equivalently in
the momentum transfer η of the projectile) may then be
computed using [180]

P (k̂, η) =
1
2π

n=+∞∑
n=−∞

in
∫ 2π

0

dφb e
−inφb

×
∫

b dbP (k̂, b) eiδ(b)Jn(ηb), (85)

where Jn is a Bessel function of order n. The fully differ-
ential cross section is then given by

d4σ

dθedφedkdη
= 2|P (k̂, η)|2. (86)

We have recently examined the single ionization of He by
fast C6+ ions at 100 MeV/amu energy. This study was
prompted by ongoing discrepancies between a measure-
ment of the fully differential cross section in the plane
perpendicular to the projectile direction and momentum
transfer [181], and perturbative calculations. A pertur-
bative approach had been expected to be quite valid at
such high incident energies, and also showed good agree-
ment with measurements in the scattering plane. Our
TDCC calculations for single ionization [179,180] were
also in good agreement with measurement in the scat-
tering plane. In the perpendicular plane, TDCC calcu-
lations found similar structures (a double-peak distribu-
tion) to the experimental fully differential cross sections,
although the magnitude of the calculations were much
lower than the measurements. However, the shape of our
TDCC calculations disagreed with the “flat” distribution
predicted from perturbative calculations [181] and more
recent pseudo-state calculations [182].

4.2 Ion-impact ionization of small molecules

The time-dependent close-coupling method was first ap-
plied to examine the double ionization of H2 by fast bare

ion projectiles [183]. The Schrödinger equation for the ion-
ization of a two-electron diatomic molecule by a fast bare
ion is written as

i
∂Ψ(r1, r2, t)

∂t
= (Hmol +Hproj)Ψ(r1, r2, t), (87)

where the non-relativistic Hamiltonian for the molecule is
given by equation (14) and the projectile Hamiltonian is
given by equation (68). By expanding the six-dimensional
target wavefunction in rotation functions equation (15),
and substitution into the time-dependent Schrödinger
equation, we obtain

see equation (88) above,

where Tm1m2(r1, θ1, r2, θ2) is defined by equation (17),
VM

m1m2,m′
1m′

2
(r1, θ1, r2, θ2) is defined by equation (18), and

the electron projectile operators are defined by [183] as

WMM ′
m1m2,m′

1m′
2
(r1, θ1, Rp, θp, t) = −Zpδm2,m′

2

×
λmax∑
λ=0

(r1, Rp)λ
<

(r1, Rp)λ+1
>

+λ∑
q=−λ

Cλ∗
q (θp, φp)Yλq(θ1, 0)

×
√

4π
2λ+ 1

δq,m1−m′
1

(89)

and

WMM ′
m1m2,m′

1m′
2
(r2, θ2, Rp, θp, t) = −Zpδm1,m′

1

×
λmax∑
λ=0

(r2, Rp)λ
<

(r2, Rp)λ+1
>

+λ∑
q=−λ

Cλ∗
q (θp, φp)Yλq(θ2, 0)

×
√

4π
2λ+ 1

δq,m2−m′
2
. (90)

The z-axis is chosen to be along the internuclear axis of
the molecule, and (θp, φp) are the angles made by the pro-
jectile with respect to this z-axis. In principle, one must
perform calculations for all possible projectile directions
relative to the internuclear axis. Fortunately, it has been
found [184,185] that consideration of just three orienta-
tions (projectile motion along the x, y, and z-axes) is often
sufficient to recover the total cross section for ion-impact
ionization of an arbitrarily aligned molecule. This approxi-
mation improves quickly with increasing projectile energy.
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PMS
l1m1l2m2(nl, k, b, T ) =

(∣∣∣∣
∫ ∞

0

dr1

∫ π

0

dθ1

∫ ∞

0

dr2

∫ π

0

dθ2 Pnl1|m1|(r1, θ1)Pkl2|m2|(r2, θ2)

× P̂MS
m1m2(r1, θ1, r2, θ2, t = T )δl,l1δm,m1

∣∣∣∣
2

+

∣∣∣∣
∫ ∞

0

dr1

∫ π

0

dθ1

∫ ∞

0

dr2

∫ π

0

dθ2Pkl1|m1|(r1, θ1)Pnl2|m2|(r2, θ2)

× P̂MS
m1m2(r1, θ1, r2, θ2, t = T )δl,l2δm,m2

∣∣∣∣
2)
. (93)

The initial condition for the solution of equation (88)
is given by

PMS
m1m2

(r1, θ1, r2, θ2, t = 0) = P̄M0S
m1m2

(r1, θ1, r2, θ2), (91)

where the expansion functions P̄M0S
m1m2

(r1, θ1, r2, θ2) are
again obtained by relaxation of the time-dependent
Schrödinger equation, with no electron-projectile interac-
tion terms, for a two-electron molecule in imaginary time.

Probabilities for single ionization of the two-electron
molecule can be written as

Psion(v, b) =
∑
nl

∫ ∞

0

dk
∑
l1l2

∑
m1m2M

× ∣∣PMS
l1m1l2m2

(nl, k, b, T )
∣∣2 , (92)

where

see equation (93) above.

The probability for double ionization can be expressed as

Pdion(v, b) =
∫ ∞

0

dk1

∫ ∞

0

dk2

×
∑
l1l2

∑
m1m2M

∣∣PMS
l1m1l2m2

(k1, k2, b, T )
∣∣2 . (94)

The momentum-space wavefunctions PMS
l1m1l2m2

(k1, k2,
b, T ) are similar to equation (21), but as in the ion-atom
case, we must remove the overlap with the initial ground
state, so that we employ the expression

PMS
l1m1l2m2

(k1, k2, b, T ) =
∫ ∞

0

dr1

∫ π

0

dθ1

∫ ∞

0

dr2

∫ π

0

dθ2

× Pk1l1|m1|(r1, θ1)Pk2l2|m2|(r2, θ2)

× P̂MS
m1m2

(r1, θ1, r2, θ2, t = T ), (95)

where P̂MS
m1m2

(r1, θ1, r2, θ2, t = T ) is given by

P̂MS
m1m2

(r1, θ1, r2, θ2, t = T ) = PMS
m1m2

(r1, θ1, r2, θ2, t = T )

− βP̄M0S0
m1m2

(r1, θ1, r2, θ2)δM,M0δS,S0, (96)

and β is again the overlap of the initial state with the final
state, defined as

β =
∑

m1m2

∫ ∞

0

dr1

∫ π

0

dθ1

∫ ∞

0

dr2

∫ π

0

dθ2

× P̄M0S0
m1m2

(r1, θ1, r2, θ2)PM0S0
m1m2

(r1, θ1, r2, θ2, t = T ). (97)

The total cross sections for single and double ionization
are then given by equations (82) and (79), respectively.

The ratio of double-to-single ionization for proton im-
pact of H2 at 1 MeV was reported to be 0.3% [183],
in reasonable agreement with measurement [186]. Fur-
ther time-dependent calculations [185,187] examined the
antiproton-impact single and double ionization of H2. Sin-
gle ionization cross section calculations were found to
be in reasonable agreement with measurement [171,188].
The molecular momentum-space wavefunctions also can
be used to compute a variety of differential cross sec-
tions for ion-impact ionization of molecules, although such
computationally intensive calculations await further su-
percomputing resources and supporting measurements.

5 Conclusions

In this colloquium we have reviewed recent progress on
the application of the time-dependent close-coupling ap-
proach to electron, photon and ion impact ionization of
small atoms and molecules. A time-dependent approach is
found to be most useful in such problems, which often in-
volve two or more charged particles moving in a Coulomb
field of an atomic or molecular ion. This is because, unlike
most time-independent approaches, a boundary condition
is not required to obtain scattering information. We have
shown how the application of the TDCC approach pro-
duces accurate scattering cross sections for most collision
systems studied so far, and also can provide insight into
the underlying physics of the scattering process. Notable
recent examples in this regard include the exploration of
the kinetic energy release effect in the double photoioniza-
tion of H2, and the analysis of the deep minimum found
in the triple differential cross sections for electron-impact
ionization of He.

There are many research areas in which future ap-
plication of the TDCC approach may prove beneficial.
A prominent example concerns systems in which the inter-
action between the outgoing electrons and core electrons
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is important and cannot easily be described by a model or
pseudo potential, such as found in the double photoion-
ization of Ne. In such cases, accurate treatment of the
interaction between the core electrons and the outgoing
electrons is required, as well as an accurate treatment of
the interaction between the outgoing electrons, to obtain
accurate scattering information.

A second future research avenue may involve extension
of the three-active-electron TDCC approach (as discussed
here for triple photoionization of Li and electron-impact
double ionization of He) to molecular systems. Such an ap-
proach is required to properly model the electron-impact
ionization-excitation and/or double ionization of H2. A
few measurements of such processes have been reported
and future studies are planned. Although the extension of
a three-electron TDCC approach to four-active-electrons
may also seem natural, we do not envision such an ex-
tension in the near future. Such calculations would of
course be formidably complex, but more importantly few
(if any) current or planned measurements explore prob-
lems in which four electrons strongly interact in the
continuum.

We are grateful for long-standing collaborations with many
researchers in the atomic collision field over the years, and
in particular wish to thank F. Robicheaux, D.C. Griffin,
C.P. Ballance, S.D. Loch, D. Schultz, G.S.J. Armstrong, C.J.
Fontes, J.C. Berengut, T. Topcu, M. Foster, T. Minami, N.R.
Badnell, M.C. Witthoeft, D.R. Plante, D.M. Mitnik, J.A.
Ludlow, U. Kleiman, T.G. Lee, and Sh.A. Abdel-Naby. The Los
Alamos National Laboratory is operated by Los Alamos Na-
tional Security, LLC for the NNSA of the U.S. DOE under Con-
tract No. DE-AC5206NA25396. Much of the work described
here was supported in part by grants from the U.S. DOE and
from the U.S. NSF to Auburn University. Computational work
was carried out at the NERSC in Oakland, California, the
NICS in Knoxville, Tennessee, and at Los Alamos National
Laboratory.

References

1. M.R.H. Rudge, M.J. Seaton, Proc. Roy. Soc. 283, 262
(1965)

2. R. Peterkop, J. Phys. B 4, 513 (1971)
3. C. Bottcher, J. Phys. B 15, L463 (1982)
4. C. Bottcher, Adv. At. Mol. Phys. 20, 241 (1985)
5. M.S. Pindzola, D.R. Schultz, Phys. Rev. A 53, 1525

(1996)
6. M.S. Pindzola, F. Robicheaux, Phys. Rev. A 54, 2142

(1996)
7. W. Ihra, M. Draeger, G. Handke, H. Friedrich, Phys. Rev.

A 52, 3752 (1995)
8. F. Robicheaux, M.S. Pindzola, D.R. Plante, Phys. Rev.

A 55, 3573 (1997)
9. M.S. Pindzola, F. Robicheaux, Phys. Rev. A 55, 4617

(1997)
10. M.S. Pindzola et al., J. Phys. B 40, R39 (2007)
11. R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J.

Ullrich, R. Moshammer, H. Schmidt-Böcking, Phys. Rep.
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22. I. Bray, D.V. Fursa, J. Röder, H. Erhardt, J. Phys. B 30,
L101 (1997)

23. I. Bray, D.V. Fursa, J. Röder, H. Erhardt, Phys. Rev. A
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