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Abstract. We introduce a new migration rule, the directional migration, into evolutionary prisoner’s
dilemma games defined in a square domain with periodic boundary conditions. We find that coopera-
tion can be enhanced to a much higher level than the case in the absence of migration. Additionally, the
presence of the directional migration has profound impact on the population structure: the directional
migration drives individuals to form a number of dense clusters which resembles social cohesion. The evo-
lutionary game theory incorporating the directional migration can reproduce some real characteristics of
populations in human society and may shed light on the problem of social cohesion.

1 Introduction

Darwin’s theory on origin of species successfully explains
many natural phenomena, however, the emergence of co-
operative behaviors in selfish individuals is still an open
question. In the evolution of life, cooperation plays greatly
active roles in different levels of complex structures of life
and society. In this context, one of the most fascinating
challenges is to understand how cooperation may survive
in communities of selfish individuals, a problem which has
been typically formalized in the framework of Evolution-
ary Game Theory [1]. Especially, the evolutionary pris-
oner’s dilemma game (PDG) [2] is extensively used as
a metaphor for studying cooperation between unrelated
individuals. In a typical two-player, one-shot PDG, two
players have to decide simultaneously cooperate or defect.
A defector would gain a higher payoff when his partner
cooperates, and both cooperators have the highest col-
lective benefit shared equally between them. However, if
both players decide to defect, they will be punished by a
lowest payoff. In classical game theory, the result that co-
operation cannot be sustained is not in line with reality. In
order to figure out how cooperation emerges in nature and
human society, many mechanisms supporting cooperation
have been proposed during the last decades, including kin
selection [3], direct reciprocity [4], indirect reciprocity [5],
group selection [6], and spatial systems with short range
interactions between individuals [7–16], and so on. In a
spatial model, cooperation can emerge and be sustained
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by forming cooperative cluster, in which cooperators have
more payoffs than defectors due to the support coming
from their cooperative neighbors, and the most cooper-
ation enhancement is achieved in scale-free networks be-
cause the individuals with large degrees play a key role on
supporting cooperation by spreading their own strategies
over their neighborhood.

Along the line of spatial evolutionary PDG, a number
of other factors have been explored, including strate-
gic complexity [17–19], adaptive network [20–26], mem-
ory effect [27], teaching ability [28–30] and social diver-
sity [31,32]. In particular, the migration of individuals has
been recognized gradually by researchers as an important
factor in evolutionary PDG [33–41]. An important work
considering migration of individuals was done by Vainstein
et al. [34]. They first introduced random migration as a
disordering factor into a square lattice and found that
cooperation in the population may be enhanced by mi-
gration. Another mechanism based on migration of in-
dividuals for stabilizing and sustaining cooperation has
been proposed by Helbing and Yu [35,36], which is called
success-driven migration leading towards the outbreak of
cooperation in a population of selfish and unrelated indi-
viduals even under noisy conditions.

Differently, Meloni et al. [37] considered a novel situa-
tion modelling highly changing environment in a number
of social activities, in which individuals may move ran-
domly on a two-dimensional plane and change their neigh-
borhood continuously by encountering different game
partners as time goes on. Considering that individuals in
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nature and human society always move to a new situation
due to some reasons such as searching for food or looking
for alliances purposefully rather than in a random way, we
propose a new migration rule in this paper. It is named
as directional migration where individuals are more will-
ing to move towards the one which he just learned from.
In the presence of the directional migration, we find that
the cooperation level is improved strongly in the inter-
mediate density regime compared with the case without
migration. More interestingly, during the evolution, coop-
erators condense into a number of tight clusters similar
to some kind of social cohesion which describes a well-
functioning core group in which the density of individuals
is high and the group members are willing to cooperate
among themselves [42]. So, our study on cooperation in a
population with the directional migration could shed some
light on the mechanism of social cohesion.

2 Model

We consider a square domain of size L × L with periodic
boundary conditions in which N = 3×103 individuals can
move. The area of the domain and the number of individ-
uals are related by the density of individuals ρ = N/L2.
During the evolution, each individual will take three suc-
cessive actions in one Monte Carlo time step. In the first
action, each individual accumulates his payoff Π by per-
forming a one-shot two-player PDG with all of his neigh-
bors. In a PDG, the involved individuals simultaneously
decide to cooperate or defect. They will receive the reward
R if both cooperate and the punishment P if both defect.
However, if one individual defects while the other cooper-
ates, the defector will get the temptation T whereas the
cooperator will get the sucker’s payoff S. The ranking of
T > R > P > S and 2R > T +S are required by a typical
PDG. Following the common practice [7], payoffs are nor-
malized by taking R = 1 and P = S = 0. The remaining
parameter T = b is a controllable parameter. To deter-
mine the neighborhood of an individual, we introduce a
parameter r. Two individuals are neighbors if and only if
the distance between them is less than r. Accordingly, the
mean connectivity, 〈k〉, in the population is related to ρ
and r as 〈k〉 = ρπr2−1. To be noted, negative 〈k〉 for suf-
ficiently low ρ means that individuals are always isolated
from others.

In the second action, individuals may update their
strategies by following a certain learning rule. There
are three commonly used learning rules. In the richest-
following rule, the focal individual will keep his strategy
unchanged if he has the highest payoff among his neigh-
bors. Otherwise, he will learn the strategy of his neighbor
with the highest payoff. In the Fermi-type rule, the fo-
cal individual randomly chooses one of his neighbors and
adopts the strategy of the neighbor with a probability
W = 1

1+e
ΔΠ
K

. ΔΠ denotes the payoff difference between

the focal individual and his chosen neighbor. The param-
eter K denotes the uncertainty in the strategy updating.
The linear rule is similar to the Fermi-type rule but with a

probability linearly proportional to the payoff difference.
In this work, we focus on the richest-following rule. How-
ever, as we show below, the qualitative results are insen-
sitive to the learning rules.

In the third action, individuals update their locations.
Under the rule of the directional migration, the focal in-
dividual will move with a speed v towards the neighbor
whose strategy he has succeeded in adopting in the sec-
ond action; otherwise the focal individual does not change
his location. In this action, the position of an individual i
adopting the strategy of an individual j follows:

−→
R i(t + 1) =

−→
R i(t) + v

−→
R j(t) −−→

R i(t)

|−→R j(t) −−→
R i(t)|

with
−→
R i(t) denoting the position of the individual i at time

step t. For simplicity, we assume that the speed v is the
same for all individuals. In the following, we will find that
the presence of the directional migration not only favors
cooperation but also gives rise to strong social cohesion.

3 Results and discussion

We first investigate how cooperation depends on the pa-
rameters such as b, ρ, r and v. To be concrete, we focus
on the model with the richest-following rule as the strat-
egy update rule. One important quantity to be monitored
is the cooperator frequency Fc in the population which is
defined as Fc = Nc/N where Nc is the number of cooper-
ators in the population. Fc is measured over 1000 Monte
Carlo steps after 9000 transient steps and are averaged
over 100 realizations.

In Figure 1, we examine Fc on the plane of b and ρ.
For a comparison, we first consider the case v = 0, that
is, the system is a motionless one. As shown in Figure 1a,
for low density region (i.e. ρ < 0.3), most of individu-
als are isolated from others and Fc stays at the initial
value. When ρ increases from 0.3, Fc first decreases due
to the connections occasionally established among indi-
viduals which favors defectors [40]. With the further in-
crease of ρ, the mean connectivity of the population be-
comes high enough to ensure the possibility of forming
compact cooperator clusters through network reciprocity
and, consequently, Fc starts rising. However for sufficiently
high ρ, the mean field effect harmful to cooperation will be
prominent since the number of neighbors of an arbitrary
individual grows high enough that the approximation of
the mean field becomes valid, which leads Fc to decrease
with ρ. When the directional migration is introduced, the
cooperation is greatly enhanced though the dependence
of Fc on ρ is qualitatively unchanged. As shown in Fig-
ure 1b, the regime on the plane of b and ρ in which co-
operators may survive expands greatly for the model with
v = 0.01. For example, at ρ = 2.5 and r = 1, cooperators
become extinct at b ≈ 1.4 when v = 0 while the extinction
of cooperators is postponed until b ≈ 1.7 when v = 0.01.
The enhancement of cooperation can also be observed at
low ρ. For example, in the range of ρ ∈ (0.6, 0.8) when
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Fig. 1. (Color online) The contour plots of the frequency of
cooperators Fc on the plane of b and ρ in spatial evolutionary
PDGs. (a) Fc in the model without migration for r = 1.0;
(b) Fc in the model with the directional migration for v = 0.01
and r = 1.0; (c) Fc in the model without migration for r = 1.6;
(d) Fc in the model with the directional migration for v = 0.01
and r = 1.6.

Fig. 2. (Color online) The contour plots of the frequency of
cooperators Fc on the plane of v and r in evolutionary PDGs
for b = 1.3 and ρ = 2.0.

r = 1, the improvement of cooperation level is obvious for
b < 1.4 in comparison with the case of v = 0. Further-
more, the dependence of Fc on b and ρ for different r is
also studied, as shown in Figures 1c and 1d. Clearly, the
contour plots of Fc in Figures 1c and 1d where r = 1.6
look like those in Figures 1a and 1b where r = 1, respec-
tively, except for a overall shift to left. The resemblance
between Figures 1a and 1c or the resemblance between
Figures 1b and 1d is due to the fact that the mean con-
nectivity of the population is determined by the product
of r and ρ, meanwhile Fc is strongly dependent on the
mean connectivity.

Then we consider the dependence of Fc on r and v. The
results are presented in Figure 2. Similar to Figure 1b, Fc

displays a non-monotonic behavior against r since r is a
measure on the mean connectivity of the population at

Fig. 3. (Color online) The snapshots of the strategy pattern
at different time steps for r = 1.0. (a) The richest-following
rule without migration for b = 1.3 and ρ = 2.0; (b) the
richest-following rule with the directional migration for b = 1.3,
ρ = 2.0 and v = 0.01; (c) the linear rule with the directional
migration for b = 1.1, ρ = 2.0, and v = 0.01; (d) the Fermi-
type rule with the directional migration for b = 1.1, ρ = 2.0,
and v = 0.01. Defectors are plotted in red and cooperators
in black.

a given ρ. Actually, for ρ = 2, the mean connectivity of
the population in Figure 2 ranges from 0.6 to 23 which is
almost as wide as those in Figure 1. From Figure 2, we
note that the variation of Fc against r is insensitive to
the velocity of the directional migration provided that v
is not too high (e.g. v < 0.6). Such an insensitivity of Fc

to v roots in the formation of dense cooperator clusters
which are separated from each other, which will be eluci-
dated in the following. However, when v is high, the fast
movement of individuals induces strong mean field effect
which results in the extinction of cooperators before the
formation of dense cooperator clusters.

The evolution of both the strategy pattern and the dis-
tribution of individuals can help us to understand clearly
how cooperation evolves. For a comparison, we still con-
sider the model with the richest-following learning rule in
the absence of the directional migration (that is, v = 0)
firstly. The successive snapshots in Figure 3a show that
cooperation will rise to a certain level after a sharp fall.
The maintenance of cooperation in this case is through the
network reciprocity in which cooperators resist the inva-
sion of defectors by forming cooperator clusters. Then we
switch to the directional migration by setting v = 0.01,
as shown in Figure 3b. Compared with the case v = 0,
the snapshots in Figure 3b display one interesting fea-
ture: cooperators tend to condense into numbers of small
high-connected clusters. Actually, in the early stage of the
evolution, the effects of the directional migration may be
ignored. As shown by Figures 3a and 3b, both situations
show the similar strategy pattern for the Monte Carlo
time step less than 20 where cooperator clusters have been
formed. However, when time goes on, the influence of the
directional migration on the distribution of individuals
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becomes prominent which tends to shrink the large and
loose cooperator clusters into tiny and dense ones. During
the process, the defectors within the interaction range of
the dense cooperator clusters are turned into cooperators
and dragged into the clusters, which further increases the
density of those tiny clusters. In the end of the process,
every individual in these tiny clusters has a connectivity
around 60 which is much higher than the average connec-
tivity around 6 in a motionless system. On the other hand,
defectors outside the interaction range of the tiny dense
cooperator clusters will distribute uniformly at around the
initial density since no strategy update happens among
them. To be mentioned, either the cooperation level or the
distribution of individuals will become frozen in the end
of the evolution. The similar phenomena can be found for
the model with the linear rule where b = 1.1 (see Fig. 3c).
The model with the Fermi-type rule behaves a little differ-
ently in which all individuals are inside tiny dense groups
in the end. As shown in Figure 3d, each dense group is
solely composed of cooperators or defectors. The presence
of dense defector clusters in Figure 3d is due to the fact
that individuals may learn from those with same payoff
under the Fermi-type rule.

The findings in Figure 3 that the directional migra-
tion may not only enhance cooperation but also assist the
formation of tiny dense clusters in a population are quite
interesting. It reveals that social cohesion may be built up
directly by the interplay between the imitation and the di-
rectional migration among individuals. On the other hand,
the coexistence of a number of tiny dense clusters in Fig-
ure 3 actually provides a real view on the population struc-
ture in the absence of a certain central authority, which is
just like the human settlement in the form of small tribes
in prehistory. Additionally, even in the modern human so-
ciety, we may observe that individuals tend to form small
groups or organizations under the driving forces of people
tending to share their neighbors’ similar characters such
as beliefs, interests, goals, and so on. In short, the model
proposed here shed some light on the formation of social
cohesion which is characterized by high cooperation level
and high connections among individuals.

Now we consider the quantity, Rk, which is the ra-
tio of the mean size of dense clusters to the average in-
dividual density. The dependence of Rk on b and ρ in
Figure 4a shows that the tiny clusters are always denser
than the average individual density regardless of the co-
operation level. It is interesting to find in Figure 4a that
the highest Rk actually occurs when cooperators become
almost extinct, which indicates that the directional migra-
tion present in the transient process plays the decisive role
on the formation of dense clusters. Furthermore, Figure 4a
shows that there exists an optimal b in a certain range
of ρ at which Rk reaches a highest value. The optimiza-
tion of Rk against b can be explained by the relationship
between the transient time and b. The transient process
for the extinction of defectors (or cooperators) at low (or
high) b is so fast that the directional migration has no
time to change the distribution of individuals. Figure 4b
shows the dependence of Rk on r and v. Again, provided

Fig. 4. (Color online) The contour plots of Rk on the plane
of b and ρ for r = 1.0 and v = 0.01 in (a), and on the plane
of v and r for b = 1.3 and ρ = 2.0 in (b).

that the directional migration is present, the tiny clusters
are denser than the average individual density no mat-
ter what the cooperation level is and the highest Rk may
appear in the regime where only defectors are survived.

Noise is ubiquitous in nature and human society. It
will be valuable to investigate how noise affects the above
phenomena. To do it, we introduce a random migration of
individuals to the model as follows. When an individual
has updated his strategy, he either performs a directional
migration with v = v1 with a probability p or moves at a
speed of v = v2 but in a random direction with a proba-
bility 1−p. If the individual does not update his strategy,
he would move at a speed of v = v2 in a random direction.
When p = 0, an extreme situation occurs where only the
random migration is allowed. On the other hand, when
p = 1, how an individual migrates depends on whether
his strategy is updated. We still consider the model with
the richest-following rule.

Figure 5a shows the results for the case with p = 0 (the
pure random migration). Though the model evolves into
an all cooperator state, the uniform distribution of indi-
viduals is unchanged. However, when p �= 0, nonuniform
distribution of individuals becomes apparent as shown by
Figures 5b and 5c. In the presence of the directional mi-
gration, the random migration has two effects on the evo-
lution of social cohesion. The first one is that the random
migration tends to break a dense cluster into several small
pieces, which is evidenced by Figure 6, in which the re-
lationship between the average connectivity of cooperator
clusters and the probability of directional migration p is
shown. From Figure 6, we can find that more larger p,
more larger the average connectivity of cooperator clus-
ters. The second one is that the random migration may
speed up the evolution of the model since the random mi-
gration of individuals outside dense clusters increases the
chance that defectors are trapped into cooperator clusters.
The results in Figures 5 and 6 further demonstrate that
the directional migration is a necessary ingredient for so-
cial cohesion. Without directional migration, random mi-
gration cannot produce high connectivity among individ-
uals even when cooperation in population is improved.
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Fig. 5. (Color online) The snapshots of the strategy pattern
in system with noise at different time steps for different p, the
probability of individuals performing the directional migration;
b = 1.3, r = 1.0, and ρ = 2.0; (a) p = 0, v2 = 0.01; (b) p = 1.0,
v1 = 0.1 and v2 = 0.01; (c) p = 0.1, v1 = 0.1 and v2 = 0.01.
Defectors are plotted in red and cooperators in black.

Fig. 6. (Color online) The number of cooperative clusters and
the average connectivity of cooperators inside clusters are plot-
ted against the probability of individual performing the direc-
tional migration, p. We set b = 1.3, ρ = 2.0, and r = 1.0.

4 Conclusion

In conclusion, we have introduced a new migration rule,
the directional migration, into evolutionary PDGs in a
square domain with periodic boundary conditions and
studied the effects of the directional migration on cooper-
ation in the planes of b and ρ and of v and r. In the pres-
ence of the directional migration, cooperation can be en-
hanced to a much higher level in comparison with the case
v = 0. Additionally, the successive snapshots suggest that
the directional migration not only enhances cooperation
but also strengthens the interactions among individuals
by forming a number of dense clusters which indicate the
appearance of social cohesion. Whereas, the random mi-
gration introduced to individuals plays a negative role on
social cohesion since the random migration always tends
to break dense clusters into small pieces.

The evolution of the spatial evolutionary PDGs in the
presence of the directional migration reproduces some real
characteristics of populations in human society and help
us to have a further understanding on the appearance of
social cohesion. To be stressed, the model proposed here is
only a minimal model for studying the effects of the direc-
tional migration on cooperation and social cohesion. The
model can be further studied by incorporating some real
factors such as to name a few, the heterogeneous interac-
tion range in which the interaction range may be different
for individuals, the collective interaction range in which
the interaction range assigned to a cluster depends on the
number of individuals in the cluster, and so on.

The authors acknowledge supports from the projects of Na-
tional Natural Science Foundation of China under Grant
Nos. 90921015 and 11247279 and the Fundamental Research
Funds for the Central Universities.
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Lenaerts, BMC Evol. Biol. 8, 287 (2008)
24. M. Perc, A. Szolnoki, G. Szabó, Phys. Rev. E, 78, 066101
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