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Abstract. We try to present a theoretical evolutionary model leading to the excitations of nonlinear pul-
sational eigenmodes in a planar (1D) collisional dust molecular cloud (DMC) on the Jeans scale. The
basis of the adopted model is the Jeans assumption of self-gravitating homogeneous uniform medium for
simplification. It is a self-gravitating multi-fluid consisting of the Boltzmann distributed warm electrons
and ions, and the inertial cold dust grains with partial ionization. Dust-charge fluctuations, convections
and all the possible collisions are included. The grain-charge behaves as a dynamical variable owing mainly
to the attachment of the electrons and ions to the grain-surfaces randomly. The adopted technique is
centered around a mathematical model based on new solitary spectral patterns within the hydrodynamic
framework. The collective dynamics of the patterns is governed by driven Korteweg-de Vries (d-KdV) and
Korteweg-de Vries (KdV) equations obtained by a standard multiscale analysis. Then, simplified analyt-
ical and numerical solutions are presented. The grain-charge fluctuation and collision processes play a
key role in the DMC stability. The sensitive dependence of the eigenmode amplitudes on diverse relevant
plasma parameters is discussed. The significance of the main results in astrophysical, laboratory and space
environments are concisely summarized.

1 Introduction

The most important ingredient of the inter-stellar medium
(ISM) is solid matter of dust grains dispersed in gaseous
phase of background plasma [1–3]. The dimension of the
dust grains, composed mainly of graphite, silicate and
metallic compound, vary from micron to sub-micron scale
size [1–4]. In regions of the self-gravitating ISM that are
sufficiently dense, and well-shielded against the dissociat-
ing effects of interstellar ultraviolet radiation, hydrogen
atoms bind to form molecules. Star and cluster formation
normally occur exclusively within this molecular phase of
the ISM through self-gravitational collapse. This region
of the ISM called dust molecular cloud (DMC) has al-
ways been well-known to be the best site of star forma-
tion through the Jeans instability [1–5]. Thus, the self-
gravitational breakdown of the grains in such clouds plays
a crucial key role in the formation processes of stars, galac-
tic structures, planetary bodies, clusters and their evolu-
tions as a whole [1–10].

In the clouds, the grains acquire a non-negligible elec-
tric charge due to interstellar radiation fields ionizing the
background gas, resulting in sticking plasma collision ef-
fects (surface bombardment with the plasma electrons and
ions), and some other high-energetic mechanisms [11–22].
In other words, the grain acquires charge by capturing
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electrons and ions from the background plasma, while,
the grain looses charge by emitting photoelectrons induced
by UV photons [4,15–19]. The static electrical capacitor
charging model of the spherical grains normally adopted
may be found to be quite idealistic. The grain charge
qd = Zde, indeed, may fluctuate [11–22]. It may, for ex-
ample, fluctuate between ±1e and 0 in the cold (dark)
clouds at T < 30 K. Again, qd > 100e in the HII re-
gion, where T ∼ 104 K [11]. As the dusty plasma sys-
tem oscillates around its defined equilibrium, qd fluctuates
about its equilibrium value like a source, or sink [19,20].
As a consequence, novel collective features to the normal
dusty plasma behavior in diverse situations are thereby in-
troduced in practical situations both with [11,19–21] and
without [13–16] self-gravity.

Investigation of various waves, instabilities and fluctu-
ations supported in such DMCs and like giant atmospheres
has become an emerging problem in space and astrophys-
ical environments of present-day research interest because
of their elementary roles played in understanding self-
gravitational collapse, formation and evolution of galactic
evolution [1–10]. The existence of both linear [5,10,11] and
nonlinear [5–9,21–24] gravito-electrostatic eigenmodes un-
der static grain charging model has been studied by many
authors in the past. Pandey et al. [11] have studied pul-
sational mode stability in DMCs with dust-charge fluc-
tuations. The fluctuations in the grain-charges are due
basically to capture or liberation of additional electrons
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and ions (or protons), which lead to density and momen-
tum losses, or even gains [11–20]. This acts as a source
of wave damping, or growth. Several frequency regimes
of observations are judiciously possible under such charge
fluctuations in linear modes [11–22]. If the dust charging is
slow compared to the wave fluctuations, the dust charges
are treated as constant. On the other hand, when charge
and wave fluctuations occur on comparable timescales,
then wave damping or growth occurs at the linear level,
and no reasonable nonlinear evolution can thereby be af-
fected. Most interesting investigation may be an interme-
diate regime, where the linear waves are not affected, but
the dust charging influences the slower nonlinear eigen-
mode developments on the observational scales of space
and time. As a result, the variation of charge on the grains
introduces an additional temporal scale in plasma. Thus,
the fluctuating grain charge becomes a new dynamical
variable evolving in time, which in turn, affects the wave-
activity spectra supported in such a broad class of complex
plasma systems [11–31].

In this communication, we try to propose an idealized
theoretical model to show the basic features of the non-
linear gravito-electrostatic eigenmodes (pulsational type)
supported in a simplified field-free planar (1D) DMC. The
main motivation is to examine the nature of the nonlin-
ear fluctuations associated with the charge-varying cloud
model. The adopted model is similar to that as consid-
ered by Pandey et al. [11] describing the linear eigen-
mode counterparts only. However, for simplicity, the gov-
erning equations for the description of the thermal species
are taken directly from various works already done by
many authors on self-gravitating collisional plasma in the
past [10,12,26–28]. An additional stimulus for consider-
ing this kind of model is that it depicts the realistic pic-
ture of astrophysical relevance in an abridged manner. We
apply a standard methodology of multiple scaling tech-
niques [6,14,16] around the defined gravito-electrostatic
equilibrium over the basic cloud structure equations. It
is found that the nonlinear electrostatic fluctuations dy-
namically evolve like a driven Korteweg-de Vries (d-KdV)
equation with a unique self-consistent nonlinear driving
source, and the self-gravitational fluctuations are governed
by a new Korteweg-de Vries (KdV) equation with no such
source. A detailed multi-parameter numerical analysis as
initial value problems by the fourth-order Runge-Kutta
method under some judicious plasma conditions is carried
out. The gravito-electrostatic eigenmode structures in the
astrophysical grainy plasma appear mainly in the form
of new solitary spectral patterns, which are shown sub-
sequently to have realistic astrophysical significance and
applicability in newer perspectives.

Apart from the “introduction” part described in Sec-
tion 1 above, this paper is structurally organized in a usual
simple format as follows. Section 2 contains physical model
of the plasma system under investigation. Section 3 con-
tains the basic governing equations describing the DMC
structure. Section 4 contains analytical calculation scheme
for the derivation of nonlinear evolution equations describ-
ing eigenmode excitations. Section 5 shows the numerical

calculation scheme displaying the graphical constructs of
the eigenmodes. Section 6 includes the relevant results and
discussions. Lastly and most importantly, Section 7 por-
trays the main conclusions of scientific interest and astro-
physical applicability along with some highlighted future
directions.

2 Physical model

A simplified field-free planar one-dimensional (1D) DMC
is considered under hydrodynamic equilibrium configura-
tion with presumed global quasi-neutrality. This is well-
known that the DMC equilibrium cannot be assumed like
a truly homogeneous one, it must be derived from the
governing structure equations themselves. Still, for sim-
plicity, hydrodynamic considerations are made to apply
the conventional fluid equations in our investigation in
presence of self-gravity contributed by the heavier grains.
The considered planar 1D geometry is considered to be
equivalent to a spherical symmetry, wherein, the fluctua-
tions propagate in radial direction only. This is how the
spherical (3D) problem gets transformed into a simplified
planar (1D) problem. Such a model could be visualized
as the static distribution of the multi-fluid consisting of
electrons, ions, neutral gas, and neutral dust grains along
with partial ionization. The solid matter of the spherical
dust grains is embedded in the gaseous phase of the back-
ground quasi-neutral plasma on the astrophysical scale.
The grains get, as usual, electrically charged due basi-
cally to the plasma environment amid statistically ran-
dom sticking collision processes [13–19]. All the grains,
for mathematical simplicity, are assumed to be of identi-
cal nature having the same geometrical size, so that all the
charged grains (hotter than the neutral grains) contain the
same amount of equilibrium charge in the defined plasma
environment. This is in accordance with spherical capac-
itor charging model of the spherical grains [16–20]. The
grain-size is much smaller than the inter-grain separation,
which is lesser than the plasma Debye length. The actual
grain charge included in the model, in reality, fluctuates
and evolves dynamically due to the attachment phenom-
ena of the thermal plasma species to the grain surface.

This may be pertinent to add furthermore that the
model setup sustains nonlinearity due to fluidity, disper-
sion due to self-gravity within planar geometrical curva-
ture and dissipation due to collective collisional dynam-
ics of intrinsic cloud origin. The strength of the electric
forces developed due to space-charge polarization effects
(local charge imbalance) are taken to be too weak to excite
higher order contributions of the various nonlinear terms
on the Jeans scale, thereby validating our underlying as-
sumption of weak nonlinearity.

In normal DMCs, magnetic field is ∼1 μG, around
which the charged grains, in principle, perform gyra-
tion [11]. For qd ∼ 100e and md ∼ 10−13 kg, the gyro-
period of the charged grains is τcd ∼ 106 years, which is
too slow to influence the grainy fluctuation dynamics con-
siderably. The effects of the magnetic field on the grains
are experienced through the plasma particles, which are
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usually well coupled to the field. The effect of the mag-
netic field is ignored, and an unmagnetized configuration
is considered [11]. The dust-charge fluctuations, further-
more, are taken into account to see the modified non-
linear eigenmode spectra. A considered wide-range spec-
trum in the grain-mass (md ∼ 10−8–10−18 kg) physically
allows a suitable parameter regime, where the unipolar
self-gravitational and bipolar electrostatic forces may be-
come comparable. Thus, the joint interplayed action of the
two opposing forces in establishing gravito-electrostatic
equilibrium may play an important role in the formation
processes of equilibrium stellar structures. Moreover, all
the possible collisional dynamics and effects are included
in the calculation scheme. The lighter constituents like the
electrons and ions are considered as the thermal species
(Boltzmannian); and the charged and neutral spherical
heavier grains are treated as the inertial species (hydro-
dynamic fluid) for any observation on the Jeans scales of
space and time. A bulk uniform flow is assumed to pre-
exist in the equilibrium. The efficacious cloud mass, as
a whole, is collectively contributed by the heavier iner-
tial grains, but within the validity limit of the Newto-
nian point-mass approximation [8,9]. It may be pertinent
to add further that high collisional momentum exchange
from the plasma species to the gains may thermalize the
complex plasma with the neutral grains. However, the
drag effects and other force field effects are neglected for
the time being. For additional simplicity and idealization
in calculation, we neglect the presence of rotation, viscos-
ity, circulation, spatio-temporal inhomogeneities, grain-
size distribution, etc.

3 Basic governing equations

The cloud equilibrium is a quasi-static distribution of
the multi-fluid constituent particles in quasi-neutral hy-
drodynamic equilibrium. The light neutral gas particles
develop a constant background, which is weakly coupled
to the collapsing charged grains. We model the fluctua-
tion dynamics by the normal continuity [26–28]; but with
collisional momentum, and coupling electro-gravitational
Poisson equations described with all conventional nota-
tions on the astrophysical scale [8–12]. Thus, the electron
dynamical evolution is portrayed (in unnormalized form)
as follows:

∂ne

∂t
+ ne

∂ve

∂x
+ ve

∂ne

∂x
= 0, (1)

and
Te
∂ne

∂x
+ ene

∂φ

∂x
+menefedcve = 0. (2)

The dynamical evolution of the plasma ions composing
the DMC is, similarly, governed by:

∂ni

∂t
+ ni

∂vi

∂x
+ vi

∂ni

∂x
= 0, (3)

and
Ti
∂ni

∂x
+ eni

∂φ

∂x
+minifidcvi = 0. (4)

As we are interested in weakly nonlinear low-frequency
eigenmodes, the inertial terms in equations (2) and (4)
signifying the force (density) balances are neglected. Here,
fedc and fidc are the electron-charged dust and ion-
charged dust collision frequencies in unnormalized form,
respectively. Also, the electrons and ions have population
densities ne, ni; velocities ve, vi; masses me, mi; charges
−e, +e; and temperatures Te, Ti such that Te ≈ Ti = Tp

(in eV); respectively. Thus, the thermodynamics of the
electrons and ions are governed by their isothermal equa-
tions of state on their thermal pressures, pe = neTe and
pi = niTi, correspondingly. In addition, φ represents the
electrostatic potential (due to space-charge polarization).
Accordingly, the neutral and charged grain evolutions in
the configuration space coordinatized by (x, t) are, respec-
tively, described by the following fluid equations,

∂ndn

∂t
+ndn

∂vdn

∂x
+vdn

∂ndn

∂x
= 0, (5)

mdnndn

[
∂vdn

∂t
+ vdn

∂vdn

∂x

]
= −Tp

∂ndn

∂x
−mdnndn

∂ψ

∂x

−mdnndnfnc (vdn − vdc) ,
(6)

∂ndc

∂t
+ndc

∂vdc

∂x
+vdc

∂ndc

∂x
= 0, (7)

and

mdcndc

[
∂vdc

∂t
+ vdc

∂vdc

∂x

]
= −Tp

∂ndc

∂x
− qdndc

∂φ

∂x

−mdcndc
∂ψ

∂x
−mdcndcfcn (vdc − vdn) .

(8)

The spatial distributions of the electrostatic potential (φ)
and self-gravitational potential (ψ) are defined by the
combining Poisson equations thereby closing the model
as given below,

∂2φ

∂x2
= −4π [e (ni − ne) − qdndc], (9)

and

∂2ψ

∂x2
= 4πG (mdnndn +mdcndc −mdnd0), (10)

where, nd0 = ndc0 + ndn0 models the Jeans swindle [8–12]
of the equilibrium unipolar gravitational force field, which
provides a formal justification for discarding the unper-
turbed gravitational field. Indeed, a spatially homoge-
neous self-gravitating plasma system cannot be in static
equilibrium (for which ∂2ψ

/
∂ξ2 ∼ 0), since there is no

pressure gradient to balance the gravitational force (orig-
inating from the equilibrium cloud-material distribution
mdnndn + mdcndc ≈ mdnd0 as evident from Eq. (10)).
This physically means that self-gravitational potential is
sourced only by density fluctuations of the infinite uni-
form homogeneous background medium under consider-
ation [32]. The Jeans assumption (ad hoc) for the self-
gravitating uniform homogeneous medium may not be



Page 4 of 14

the most suitable one, but it allows us to treat the self-
gravitating inhomogeneous plasma dynamics analytically
in a simplified way [32]. The results (on fluctuations and
eigenmodes) based on this homogenization assumption in
most of the cases have been found to be not far from
realistic picture [5,6,21,32]. Finally, the charge dynamics
equation [11] for the variable-charge grains is given by:

∂qd
∂t

+ vdc
∂qd
∂x

= e

[
fed

(ne − ne0)
nd0

− fid
(ni − ne0)

nd0

]
, (11)

where, fed and fid are electron-dust and ion-dust
collision frequencies, respectively. Here, G (=6.67 ×
10−11 N m2 kg−2) represents the universal gravitational
constant. Furthermore, the neutral and charged grains
each with mass md and temperature Td have population
densities ndn, ndc; and velocities vdn, vdc; respectively.

4 Analytical calculation scheme

In order to investigate the nonlinear gravito-electrostatic
fluctuations supported in the cloud analytically as a first
step, we apply a standard normalization procedure of as-
trophysical relevance [9] to obtain the normalized form of
equations (1)–(11), respectively, given as follows:

∂Ne

∂τ
+Ne

∂Me

∂ξ
+Me

∂Ne

∂ξ
= 0, (12)

∂Ne

∂ξ
+Ne

∂Φ

∂ξ
+

(
me

md

)
NeMeFedc = 0, (13)

∂Ni

∂τ
+Ni

∂Mi

∂ξ
+Mi

∂Ni

∂ξ
= 0, (14)

∂Ni

∂ξ
+Ni

∂Φ

∂ξ
+

(
mi

md

)
NiMiFidc = 0, (15)

∂Ndn

∂τ
+Ndn

∂Mdn

∂ξ
+Mdn

∂Ndn

∂ξ
= 0, (16)

Ndn

[
∂Mdn

∂τ
+Mdn

∂Mdn

∂ξ

]
= − 1

ndn0

∂Ndn

∂ξ

−
(
mdn

ndn0e

)
Ndn

∂Ψ

∂ξ
−

(
1

ndn0

)
Fnc (Mdn −Mdc) , (17)

∂Ndc

∂τ
+Ndc

∂Mdc

∂ξ
+Mdc

∂Ndc

∂ξ
= 0, (18)

Ndc

[
∂Mdc

∂τ
+Mdc

∂Mdc

∂ξ

]
= − 1

ndc0

∂Ndc

∂ξ

−
(
qd
ndc0

)
QdNdc

∂Φ

∂ξ
−

(
mdc

ndc0e

)
Ndc

∂Ψ

∂ξ

−
(

1
ndc0

)
Fcn (Mdc −Mdn) ,

(19)
∂2Φ

∂ξ2
=

e

m2
dcnd0G

× [e (ne0Ne − ni0Ni) + (qd0ndc0) Qd Ndc] , (20)

∂2Ψ

∂ξ2
=

e

mdnnd0
(ndn0Ndn + ndc0Ndc − nd0Nd0) , (21)

and

∂Qd

∂τ
+Mdc

∂Qd

∂ξ
=

e

qd0

(
ne0

nd0

)

× Fed

[{
Ne −

(
ni0

ne0

) (
Fid

Fed

)
Ni

}

−
(

1 +
ni0

ne0

Fid

Fed

)]
. (22)

Here, the independent variables like position (ξ) and time
(τ) are normalized by the Jeans length (λJ ) and Jeans
time (ω−1

J ) scales, respectively. The parameters Me (ξ),
Mi (ξ), Mdn (ξ), and Mdc (ξ) represent the flow velocities
of the electrons, ions, neutral grains and charged grains
normalized by the dust sound phase speed Css each. More-
over, Ne, Ni, Ndn and Ndc are the population densities
of the electrons, ions, neutral grains and charged grains
normalized by their equilibrium densities ne0, ni0, ndn0,
and ndc0, respectively. Both the electrostatic potential Φ
and self-gravitational potential Ψ are normalized by the
same electron thermal potential Tp/e so as to compare
their fluctuation levels on a common equivalent reference
footing. The grain charge Qd is normalized by the equi-
librium grain charge qd0. Lastly, the symbols Fedc, Fed,
Fidc, Fid, Fnc and Fcn are the collision frequencies of the
electrons and charged grains; electrons and dust grains;
ions and charged grains; ions and dust grains; neutral and
charged grains; and finally, charged and neutral grains; re-
spectively, each normalized by the Jeans frequency ωJ for
our low frequency fluctuation analyses on the astrophysi-
cal scale. It may be noted that the self-gravitating large-
scale plasmas are known to be inhomogeneous in nature,
and so the equilibrium parameter values keep on chang-
ing from point to point [5–12,32]. Thus, adopting constant
normalization parameter values dependent on the plasma
variables throughout in the entire cloud is not so justifiable
in such realistic situations [12]. But within the framework
of the Jeans assumption of self-gravitating homogeneous
medium validating local analyses [32], our choice of nor-
malization constants dependent of the equilibrium is well
justified in idealization.

We apply the standard methodology of multiple scal-
ing techniques [6,14,16] over equations (12)–(22) to study
the fluctuations within the small amplitude approxima-
tion (weak nonlinearity). Thus, the independent variables
with all the usual notations are stretched into a new
space defined by the coordinate transformations X =
ε1/2 (ξ − μτ) and T = ε3/2τ . In the new space, the dif-
ferential operators get transformed as ∂

/
∂ξ = ε1/2∂/∂X,

and ∂2
/
∂ξ2 = ε∂2

/
∂X2, where μ is the phase velocity of

the fluctuations (normalized by Css), and ε is a minor
parameter characterizing the strength of nonlinearity and
dispersion. Let us assume that the perturbations of our
interest are local, and their wavelengths are much smaller
compared to the relevant inhomogeneity scale lengths.
Accordingly, the relevant dependent variables appearing
in equations (12)–(22) are now expanded nonlinearly (in
various ε-powers) around the respective equilibrium val-
ues defined under weak nonlinearity approximation (up to
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the 3rd order) as follows:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ne

Ni

Ndn

Ndc

Me

Mi

Mdn

Mdc

Φ
Ψ
Qd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ε

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ne1

Ni1

Ndn1

Ndc1

Me1

Mi1

Mdn1

Mdc1

Φ1

Ψ1

Qd1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ε2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ne2

Ni2

Ndn2

Ndc2

Me2

Mi2

Mdn2

Mdc2

Φ2

Ψ2

Qd2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
... (23)

We now use the nonlinear expansion (23) in equa-
tions (12)–(22) for full order-by-order analyses. It is worth
mentioning that there are terms involving both integral
and half-integral powers on the ordering parameter ε.
But, due to weak nonlinearity approximation [8,9,16], only
the lowest-order fluctuations are considered ignoring the
higher-order ones. Now, equating the like terms in various
powers of ε from equation (12), one gets

ε3/2 :
∂Me1

∂X
− μ

∂Ne1

∂X
= 0, (24)

ε5/2 :
∂Ne1

∂T
− μ

∂Ne2

∂X
+Ne1

∂Me1

∂X
+
∂Me2

∂X

+Me1
∂Ne1

∂X
= 0, (25)

ε7/2 :
∂Ne2

∂T
+Ne2

∂Me1

∂X
+Ne1

∂Me2

∂X
+Me2

∂Ne1

∂X

+Me1
∂Ne2

∂X
= 0, (26)

ε9/2 : Ne2
∂Me2

∂X
+Me2

∂Ne2

∂X
= 0, (27)

and so on.
Again, the order-by-order analysis in various powers of

ε from equation (13) yields

ε1 :
(
me

md

)
FedcMe1 = 0, (28)

ε2 :
(
me

md

)
Fedc (Me1Ne1 +Me2) = 0, (29)

ε3 :
(
me

md

)
Fedc (Me1Ne2 +Ne1Me2) = 0, (30)

ε4 :
(
me

md

)
FedcNe2Me2 = 0, (31)

ε3/2 :
∂Ne1

∂X
+
∂Φ1

∂X
= 0, (32)

ε5/2 :
∂Ne2

∂X
+Ne1

∂Φ1

∂X
+
∂Φ2

∂X
= 0, (33)

ε7/2 : Ne2
∂Φ1

∂X
+Ne1

∂Φ2

∂X
= 0, (34)

ε9/2 : Ne2
∂Φ2

∂X
= 0, (35)

and so on.

This is clear that equations (28)–(31) are applicable
only for me/md → 0, which is ∼10−19 (∼0) in our model
description. In addition, higher-order harmonics have neg-
ligible variations with distance under the weak nonlin-
earity approximation [8,9,16], which are being neglected
subsequently. Similarly, order-by-order analysis of equa-
tion (14) gives

ε3/2 :
∂Mi1

∂X
− μ

∂Ni1

∂X
= 0, (36)

ε5/2 :
∂Ni1

∂T
− μ

∂Ni2

∂X
+Ni1

∂Mi1

∂X
+
∂Mi2

∂X

+Mi1
∂Ni1

∂X
= 0,

(37)

ε7/2 :
∂Ni2

∂T
+Ni2

∂Mi1

∂X
+Ni1

∂Mi2

∂X
+Mi2

∂Ni1

∂X

+Mi1
∂Ni2

∂X
= 0,

(38)

ε9/2 : Ni2
∂Mi2

∂X
+Mi2

∂Ni2

∂X
= 0, (39)

and so forth.

The order-by-order analysis in various powers of ε from
equation (15), similarly, yields

ε1 :
(
mi

md

)
FidcMi1 = 0, (40)

ε2 :
(
mi

md

)
Fidc (Mi1Ni1 +Mi2) = 0, (41)

ε3 :
(
mi

md

)
Fidc (Mi1Ni2 +Ni1Mi2) = 0, (42)

ε4 :
(
mi

md

)
FidcNi2Mi2 = 0, (43)

ε3/2 :
∂Ni1

∂X
+
∂Φ1

∂X
= 0, (44)

ε5/2 :
∂Ni2

∂X
+Ni1

∂Φ1

∂X
+
∂Φ2

∂X
= 0, (45)

ε7/2 : Ni2
∂Φ1

∂X
+Ni1

∂Φ2

∂X
= 0, (46)

ε9/2 : Ni2
∂Φ2

∂X
= 0, (47)

and so on.

This is seen that equations (40)–(43) are valid only for
mi/md → 0, which is ∼10−15 (∼0) in our case. Likewise,
equating the terms in various powers of ε from both sides
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of equation (16), one gets

ε3/2 :
∂Mdn1

∂X
− μ

∂Ndn1

∂X
= 0, (48)

ε5/2 :
∂Ndn1

∂T
− μ

∂Ndn2

∂X
+Ndn1

∂Mdn1

∂X
+
∂Mdn2

∂X

+Mdn1
∂Ndn1

∂X
= 0, (49)

ε7/2 :
∂Ndn2

∂T
+Ndn2

∂Mdn1

∂X
+Ndn1

∂Mdn2

∂X

+Mdn2
∂Ndn1

∂X
+Mdn1

∂Ndn2

∂X
= 0, (50)

ε9/2 : Ndn2
∂Mdn2

∂X
+Mdn2

∂Ndn2

∂X
= 0, (51)

and so forth.
Similar treatment on equation (17) gives,

ε1 : Fnc (Mdn1 −Mdc1) = 0, (52)

ε2 : Fnc (Mdn2 −Mdc2) = 0, (53)

ε3/2 :
1

ndn0

∂Ndn1

∂X
− μ

∂Mdn1

∂X
+

(
mdn

ndc0e

)
∂Ψ1

∂X
= 0,

(54)

ε5/2 :
∂Mdn1

∂T
− μ

∂Mdn2

∂X
+Mdn1

∂Mdn1

∂X

− μNdn1
∂Mdn1

∂X
+

1
ndn0

∂Ndn2

∂X

+
(
mdn

ndn0e

)
Ndn1

∂Ψ1

∂X
+

(
mdn

ndn0e

)
∂Ψ2

∂X
= 0, (55)

ε7/2 :
∂Mdn2

∂T
+Mdn2

∂Mdn1

∂X
+Mdn1

∂Mdn2

∂X

+Ndn1
∂Mdn1

∂T
− μNdn1

∂Mdn2

∂X

+Ndn1Mdn1
∂Mdn1

∂X
− μNdn2

∂Mdn1

∂X

+
(
mdn

ndn0e

)
Ndn2

∂Ψ1

∂X
+

(
mdn

ndn0e

)
Ndn1

∂Ψ2

∂X
= 0,

(56)

ε9/2 : Mdn2
∂Mdn2

∂X
+Ndn1

∂Mdn2

∂T

+Ndn1Mdn2
∂Mdn1

∂X
+Ndn1Mdn1

∂Mdn2

∂X

+Ndn2
∂Mdn1

∂T
− μNdn2

∂Mdn2

∂X

+Ndn2Mdn1
∂Mdn1

∂X
+

(
mdn

ndn0e

)
Ndn2

∂Ψ2

∂X
= 0,

(57)

ε11/2 : Ndn1Mdn2
∂Mdn2

∂X
+Ndn2

∂Mdn1

∂T

+Ndn2Mdn2
∂Mdn1

∂X
+Ndn2Mdn1

∂Mdn2

∂X
= 0,

(58)

ε14/2 : Ndn2Mdn2
∂Mdn2

∂X
= 0, and so on. (59)

One can see from equations (52)–(53) that the velocity
perturbations of the neutral and charged grains are equal
due obviously to the consideration of identical spherical
grains each with mass md. Again, equating the like terms
from both sides of equation (18), one gets

ε3/2 :
∂Mdc1

∂X
− μ

∂Ndc1

∂X
= 0, (60)

ε5/2 :
∂Ndc1

∂T
− μ

∂Ndc2

∂X
+Ndc1

∂Mdc1

∂X

+
∂Mdc2

∂X
+Mdc1

∂Ndc1

∂X
= 0, (61)

ε7/2 :
∂Ndc2

∂T
+Ndc2

∂Mdc1

∂X
+Ndc1

∂Mdc2

∂X

+Mdc2
∂Ndc1

∂X
+Mdc1

∂Ndc2

∂X
= 0, (62)

ε9/2 : Ndc2
∂Mdc2

∂X
+Mdc2

∂Ndc2

∂X
= 0, (63)

and so on.

The order-by-order analysis in various powers of ε from
equation (19) yields

ε1 : Fcn (Mdc1 −Mdn1) = 0, (64)

ε2 : Fcn (Mdc2 −Mdn2) = 0, (65)

ε3/2 :
1

ndc0

∂Ndc1

∂X
− μ

∂Mdc1

∂X
+

(
mdc

ndc0e

)
∂Ψ1

∂X
= 0, (66)

ε5/2 :
∂Mdc1

∂T
− μ

∂Mdc2

∂X
+Mdc1

∂Mdc1

∂X
− μNdc1

∂Mdc1

∂X

+
1

ndc0

∂Ndc2

∂X
+

(
mdc

ndc0e

)
Ndc1

∂Ψ1

∂X

+
(
mdc

ndc0e

)
∂Ψ2

∂X
+

(
qd0

ndc0

)
Qd1

∂Φ1

∂X
= 0, (67)

ε7/2 :
∂Mdc2

∂T
+Mdc2

∂Mdc1

∂X
+Mdc1

∂Mdc2

∂X
+Ndc1

∂Mdc1

∂T

− μNdc1
∂Mdc2

∂X
+Ndc1Mdc1

∂Mdc1

∂X

− μNdc2
∂Mdc1

∂X
+

(
mdc

ndc0e

)
Ndc2

∂Ψ1

∂X

+
(
mdc

ndc0e

)
Ndc1

∂Ψ2

∂X
+

(
qd0

ndc0

)
Qd2

∂Φ1

∂X

+
(
qd0

ndc0

)
Qd1Ndc1

∂Φ1

∂X
+

(
qd0

ndc0

)
Qd1

∂Φ2

∂X
= 0,

(68)
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ε9/2 : Mdc2
∂Mdc2

∂X
+Ndc1

∂Mdc2

∂T
+Ndc1Mdc2

∂Mdc1

∂X

+Ndc1Mdc1
∂Mdc2

∂X
+Ndc2

∂Mdc1

∂T

− μNdc2
∂Mdc2

∂X
+Ndc2Mdc1

∂Mdc1

∂X

+
(
mdc

ndc0e

)
Ndc2

∂Ψ2

∂X
+

(
qd0

ndc0

)
Qd2Ndc1

∂Φ1

∂X

+
(
qd0

ndc0

)
Qd1Ndc2

∂Φ1

∂X

+
(
qd0

ndc0

)
Qd2

∂Φ2

∂X
+

(
qd0

ndc0

)
Qd1Ndc1

∂Φ2

∂X
= 0,

(69)

ε11/2 : Ndc1Mdc2
∂Mdc2

∂X
+Ndc2

∂Mdc1

∂T
+Ndc2Mdc2

∂Mdc1

∂X

+Ndc2Mdc1
∂Mdc2

∂X
+

(
qd0

ndc0

)
Qd2Ndc2

∂Φ1

∂X

+
(
qd0

ndc0

)
Qd2Ndc1

∂Φ2

∂X

+
(
qd0

ndc0

)
Qd1Ndc2

∂Φ2

∂X
= 0, (70)

ε14/2 :Ndc2Mdc2
∂Mdc2

∂X
+

(
qd0

ndc0

)
Qd2Ndc2

∂Φ2

∂X
=0, (71)

and so on.
We see that here too, the implications of equations (64)

and (65) are the same as in the case of equations (52)–
(53). The order-by-order analysis in various powers of ε
from equation (20), similarly, yields

ε0 :
e2

m2
dcnd0G

(ne0 − ni0) = 0, (72)

ε1 :
e

m2
dcnd0G

(ene0Ne1 − eni0Ni1 + qd0ndc0Qd1) = 0,

(73)

ε2 :
∂2Φ1

∂X2
=

e

m2
dcnd0G

(ene0Ne2 − eni0Ni2 + qd0ndc0Qd2

+qd0ndc0Qd1Ndc1) , (74)

ε3 :
∂2Φ2

∂X2
=

e

m2
dcnd0G

× (qd0ndc0Qd2Ndc1 + qd0ndc0Qd1Ndc2) , (75)
ε4 : qd0ndc0Qd2Ndc2 = 0, (76)

and so on.
From equation (21), similarly, order-by-order analysis

yields

ε0 :
e

mdnnd0
(ndn0 + ndc0 − nd0) = 0, (77)

ε1 :
e

mdnnd0
(ndn0Ndn1 + ndc0Ndc1) = 0, (78)

ε2 :
∂2Ψ1

∂X2
=

e

mdnnd0
(ndn0Ndn2 + ndc0Ndc2) , (79)

ε3 :
∂2Ψ2

∂X2
= 0, (80)

and so on.

Lastly, equating the terms in various powers of ε from
equation (22), one gets

ε0 : − 2e ni0

qd0nd0
Fid = 0, (81)

ε1 :
e

qd0

(
ne0

nd0

)
Fed

{
Ne1 −

(
ni0

ne0

)
Fid

Fed
Ni1

}
= 0, (82)

ε2 :
e

qd0

(
ne0

nd0

)
Fed

{
Ne2 −

(
ni0

ne0

)
Fid

Fed
Ni2

}
= 0, (83)

ε3/2 : −μ∂Qd1

∂X
= 0, (84)

ε5/2 :
∂Qd1

∂T
− μ

∂Qd2

∂X
+Mdc1

∂Qd1

∂X
= 0, (85)

ε7/2 :
∂Qd2

∂T
+Mdc2

∂Qd1

∂X
+Mdc1

∂Qd1

∂X
= 0, (86)

ε9/2 : Mdc2
∂Qd2

∂X
= 0, (87)

and so forth.
It may be noticed that equation (81) is applicable for

very strongly charged dust grains so that the reciprocal of
their equilibrium charge, 1/qd0 → 0. Our underlying ap-
proximation of weak nonlinearity is justifiably reflected
in all equations (24)–(87), where higher-order harmon-
ics get self-consistently negligible due normally to weak
nonlinearity in the simplified proposed model. Now, after
simplifying equation (74), by eliminating the second-order
perturbed quantities using the various relations within
equations (24)–(73) and (75)–(87), we get the follow-
ing d-KdV equation describing the nonlinear electrostatic
fluctuations (in terms of Φ1), expressed as:

∂Φ1

∂T
+A1Φ1

∂Φ1

∂X
+B1

∂3Φ1

∂X3
= C1Φ

2
1

∂Φ1

∂X
, (88)

where, the response coefficients A1 (convective), B1 (dis-
persive) and C1 (driving), dependent on the equilibrium
cloud parameters, are defined by:

A1 = −μ, B1 =
m2

dcnd0Gμ

e2 (ne0 − ni0)
, C1 = − (ene0 − eni0)

n2
dc0μ

.

(89)
Thus, the electrostatic eigenmodes are collectively gov-
erned by equation (88) having a self-consistent nonlinear
source term. The effect of grain-mass appears in B1, and
so, the third term in equation (88) represents the grain
inertial outcome on the fluctuation dynamics.

Again, by simplifying equation (79), with elimina-
tion procedure of the second-order perturbed quantities
using the various relations within equations (24)–(78)
and (80)–(87), we obtain the following KdV equation de-
picting the nonlinear self-gravitational fluctuations (in
terms of Ψ1), which is presented as:

∂Ψ1

∂T
+A2Ψ1

∂Ψ1

∂X
+B2

∂3Ψ1

∂X3
= 0, (90)

where, the response coefficients A2 (convective) and B2

(dispersive), dependent on the diverse DMC parameters,
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are given by:

A2 =
μmdn

(
1 − ndn0μ

2
)2

e (nndoμ2 − 1)3
+

1
2endn0μ

,

B2 =
nd0

(
1 − ndn0μ

2
)2

2μn2
dn0

. (91)

As a result, the self-gravitational fluctuations are collec-
tively governed by equation (90) having no self-consistent
source term, as in contrast with the case of electro-
static counterpart. The effect of grain-mass appears in A2,
and consequently, the first term in equation (90) repre-
sents the grain inertial effect on the associated fluctuation
dynamics.

The basic characteristics of the fluctuation dynam-
ics, and associated evolutionary eigenmode structures can
conveniently be studied with the help of time-stationary
(steady-state) solutions [8,9,16]. Thus, for computational
simplicity, equations (88) and (90) are transformed into or-
dinary differential equations (ODEs) by the Galilean type
(commoving) of coordinate transformation ρ = X − T so
that ∂/∂X = ∂/∂ρ and ∂/∂T = −∂/∂ρ without any loss
of generality of the considered fluctuation dynamics as
follows:

∂Φ1

∂ρ
−A1Φ1

∂Φ1

∂ρ
−B1

∂3Φ1

∂ρ3
= −C1Φ

2
1

∂Φ1

∂ρ
, (92)

and
∂Ψ1

∂ρ
−A2Ψ1

∂Ψ1

∂ρ
−B2

∂3Ψ1

∂ρ3
= 0. (93)

The explicit analytical solutions of equations (92) and (93)
in the asymptotically zero limit of the fluctuations, and
their gradients as a solitonic spectrum are well-known [16].
For observing exact microphysical details of the eigen-
modes patterns, numerical techniques are being adopted.

5 Numerical calculation scheme

The collective KdV system obtained analytically is nu-
merically integrated as initial value problems, by adopt-
ing the fourth-order Runge-Kutta method, to pictorialize
the basic microphysical features of the lowest-order diverse
electro-gravitational fluctuation dynamics in response to
a sensible multi-parameter variation. The numerically ob-
tained profiles of the steady-state structures of the electro-
static eigenmode spectral patterns and related properties
of the cloud (after Eq. (92)) are graphically displayed in
Figures 1–3. Figure 1 depicts the profile structures of the
lowest-order perturbed electrostatic (a) potential (Φ1), (b)
field (−Φ1ρ), (c) potential curvature (Φ1ρρ), and (d) phase
portrait (in phase space defined by Φ1 and Φ1ρ). Vari-
ous lines correspond to case (1): md = 2.08 × 10−12 kg
(blue line), case (2): md = 4.14 × 10−12 kg (red line),
case (3): md = 6.21× 10−12 kg (green line), and case (4):
md = 8.28 × 10−12 kg (black line), respectively. Differ-
ent input initial values used are (Φ)i = 1.00 × 10−7,

(Φρ)i = −2.00 × 10−7, and (Φρρ)i = 1.00 × 10−3. The
other parameters kept fixed are ne0 = 2.01 × 1012 m−3,
ni0 = 4.95 × 1012 m−3, ndn0 = 4.20 × 106 m−3, ndc0 =
2.35 × 106 m−3 and μ = 1.01. It is seen that the elec-
trostatic fluctuations (Fig. 1a), fields (Fig. 1b) and fluc-
tuation curvatures (Fig. 1c) evolve like solitonic spectral
patterns (extended and chain) as a conservative dynam-
ics with closed form of phase space geometry (Fig. 1d).
Figure 2 shows the same as Figure 1, but with md =
8.28 × 10−12 kg. Various lines correspond to case (1):
ndn0 = 8.50 × 106 m−3 (blue line), case (2): ndn0 =
1.97×107 m−3 (red line), case (3): ndn0 = 3.08×107 m−3

(green line), and case (4): ndn0 = 4.20 × 107 m−3 (black
line), respectively. Lastly, Figure 3 portrays the same as
Figure 1, but with md = 8.28 × 10−12 kg. Various lines
correspond to case (1): μ = 0.25 (blue line), case (2):
μ = 0.50 (red line), case (3): μ = 0.75 (green line), and
case (4): μ = 1.01 (black line), respectively.

The graphical structures of the self-gravitational fluc-
tuation dynamics obtained numerically (after Eq. (93))
under judicious multi-parameter variation scheme to ex-
amine the detailed features of the eigenmode formation are
displayed in Figures 4 and 5. Figure 4 shows the profiles of
the lowest-order perturbed self-gravitational (a) potential
(Ψ1), (b) field (−Ψ1ρ), (c) potential curvature (Ψ1ρρ), and
(d) phase portrait (in phase space defined by Ψ1 and Ψ1ρ).
Various lines correspond to case (1): ndn0 = 5.90×107 m−3

(blue line), case (2): ndn0 = 1.20 × 108 m−3 (red line),
case (3): ndn0 = 1.81×108 m−3 (green line), and case (4):
ndn0 = 2.42 × 108 m−3 (black line), respectively. Dif-
ferent input initial values used are (Ψ)i = 1.00 × 10−7,
(Ψρ)i = −2.00×10−7, and (Ψρρ)i = 1.00×10−3. The other
parameters kept fixed are μ = 0.96, ndn0 = 2.42×108 m−3,
ndc0 = 6.43×106 m−3 and md = 8.28×10−12. Lastly, Fig-
ure 5 presents the same as Figure 4. Various lines corre-
spond to case (1): μ = 0.32 (blue line), case (2): μ = 0.53
(red line), case (3): μ = 0.74 (green line), and case (4):
μ = 0.96 (black line), respectively.

6 Results and discussions

This work focuses on the development of a simplified
calculation scheme to show the nature of the nonlinear
gravito-electrostatic fluctuation dynamics in DMC in the
small-amplitude limit (weak nonlinearity). We use the
well-known Jeans assumption of uniform self-gravitating
homogeneous medium in normalizing our simplified model
setup. It is seen that the eigenmode evolutions on the
Jeans scale are expressible by a new KdV system derived
by multiple scaling technique. Numerical simulation shows
that both the classes (electrostatic and self-gravitational)
of eigenmodes undergo a unique transition of soliton-chain
to single soliton-type eigenmodes (Figs. 1a–5a) in some ju-
diciously chosen diverse plasma conditions. The associated
field fluctuations evolve as periodic waves (Figs. 1b–5b).
The electrostatic instabilities introduce the corresponding
fluctuations in the perturbed plasma quasi-neutrality con-
ditions (Figs. 1c–3c) as well, where (0, 0, 0) for (ρ, Φ1, Φ1ρ)
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(d) 

(b) 

Fig. 1. Profile of the lowest-order perturbed electrostatic (a) potential, (b) field, (c) potential curvature, and (d) phase portrait.
Various lines correspond to case (1): md = 2.08 × 10−12 kg (blue line), case (2): md = 4.14 × 10−12 kg (red line), case (3):
md = 6.21 × 10−12 kg (green line), and case (4): md = 8.28 × 10−12 kg (black line), respectively. Different input initial
values used are (Φ)i = 1.00 × 10−7, (Φρ)i = −2.00 × 10−7, and (Φρρ)i = 1.00 × 10−3. The other parameters kept fixed are,
ne0 = 2.01 × 1012 m−3, ni0 = 4.95 × 1012 m−3, ndn0 = 4.20 × 107 m−3, ndc0 = 2.53 × 106 m−3, μ = 1.01, G = 6.67 ×
10−11 N m2 kg−2, and e = 1.67 × 10−19 C.

is the most stable focal point for the evolution of the fluc-
tuations (Figs. 1d–3d).

Analogous to the electrostatic fluctuation evolutions
(Figs. 1–3), the self-gravitational eigenmode dynamics too
shows miscellaneous solitary spectral patterns (Figs. 4
and 5). As the equilibrium value of the neutral dust-grain
density increases, the self-gravitational potential fluctua-
tion undergoes an interesting dynamical transition from
solitary chain (smaller amplitude) to a two-tail extended
compressive soliton (larger amplitude), and vice versa
(Fig. 4a). The corresponding field fluctuation shows a
composite mixture of compressive and rarefactive solitary
patterns (Fig. 4b). The associated potential curvature is
a bell-shaped (rarefactive) solitary shapes (Fig. 4c). The
phase space trajectories evolve as closed-form patterns
showing conservative signatures of the dynamics (Fig. 4d).
With variation in the reference frame velocity as well,

similar self-gravitational eigenmode features are observed
(Fig. 5). The self-gravitational fluctuation phase portraits
too show that (0, 0, 0) for (ρ, Ψ1, Ψ1ρ) is the most stable
focal point of the dynamical evolution of the fluctuations
(Figs. 4d–5d). Our theoretical analyses allow us to summa-
rize the following main points of space and astrophysical
concerns.

1. The nonlinear gravito-electrotatic (pulsational) fluctu-
ation dynamics in presence of variable-charge grains
and all the possible collisional effects in planar ge-
ometry are collectively governed by new uncoupled
pair KdV equations obtained by multiple scaling tech-
nique. The electrostatic eigenmodes are expressible by
the d-KdV equation having a self-consistent nonlin-
ear driving source. The source naturally arises due to
the electron-ion ambipolar polarization effect leading



Page 10 of 14

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 1010
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

66
x 10

-3

Distance

E
le

ct
ro

st
at

ic
 p

o
te

n
tia

l

Profile of electrostatic potential

 

 

Case 1
Case 2
Case 3
Case 4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 1010
-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

22
x 10

-3

Distance

E
le

ct
ri

c 
fi

el
d

Profile of electric field

 

 

Case 1
Case 2
Case 3
Case 4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 1010
-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75
x 10

-3

Distance

E
le

ct
ro

st
at

ic
 p

o
te

n
tia

l c
u

rv
at

u
re

Profile of electrostatic potential curvature

 

 

Case 1
Case 2
Case 3
Case 4

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 66

x 10
-3

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

22
x 10

-3

Electrostatic potential

E
le

ct
ro

st
at

ic
 p

o
te

n
tia

l g
ra

d
ie

n
t

Phase portrait

 

 

Case 1
Case 2
Case 3
Case 4

 (a) 

(c)                                                                                         (d) 

(b) 

Fig. 2. Same as Figure 1, but with md = 8.28 × 10−12 kg. Various lines correspond to case (1): ndn0 = 8.50 × 106 m−3 (blue
line), case (2): ndn0 = 1.97×107 m−3 (red line), case (3): ndn0 = 3.08×107 m−3 (green line), and case (4): ndn0 = 4.20×107 m−3

(black line), respectively.

to dust-charge fluctuation, equilibrium charged grain
density and reference frame velocity. Although weak,
the source vanishes completely for (1) ne0 = ni0,
(2) μ → ∞, and (3) ndc0 → ∞ (as clearly evident
from Eq. (89)). Likewise, the self-gravitational coun-
terparts of the fluctuations are collectively describable
by the KdV equation (with no source). All the fluc-
tuations are co-excited within an integrated interplay
of diverse nonlinear (hydrodynamic cause), dispersive
(self-gravitational cause) and weakly dissipative (colli-
sional cause) effects cooperatively.

2. The electrostatic fluctuations undergo a new transi-
tion from soliton-chain to single-soliton type eigen-
mode with increase in grain mass (Fig. 1a). This may
be at the cost of self-gravitational effects, which in-
crease with increase in grain-mass, and vice versa.

3. The amplitude of the electrostatic fluctuations in-
creases with increase in the equilibrium neutral dust
population density, and vice versa (Fig. 2a). As the
equilibrium neutral dust density increases, it thereby

increases the charged dust population density by col-
lisions. Thus, the electrostatic repulsive force among
the like charged grains, and hence, charge-fluctuation
increase. This, in turn, enhances the magnitude of the
electrostatic fluctuations.

4. It is seen that with increase in fluctuation phase speed
(or, reference frame velocity), there is an interest-
ing transition from soliton-chain to single soliton-type
eigenmode (Fig. 3a), as before (Fig. 1a). The compres-
sive solitary amplitude increases with increase in the
phase speed, and vice versa.

5. The amplitude of the self-gravitational fluctuations in-
creases with increase in equilibrium neutral dust popu-
lation density, and vice versa (Fig. 4a). This is because
of increase in self-gravitational attraction with increase
in equilibrium neutral dust-population density.

6. Besides, as the fluctuation phase speed (or, refer-
ence frame velocity) increases, there is a transition
from soliton-chain to single soliton-type eigen-
mode (Fig. 5a), as before (Fig. 3a). Thus, the
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(c)                                                                                         (d) 
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Fig. 3. Same as Figure 1, but with md = 8.28 × 10−12 kg. Various lines correspond to case (1): μ = 0.25 (blue line), case (2):
μ = 0.50 (red line), case (3): μ = 0.75 (green line), and case (4): μ = 1.01 (black line), respectively.

self-gravitational fluctuation amplitude increases with
the reference frame velocity, and vice versa.

7. Furthermore, the periodic nature of all the ob-
served eigenmodes (Figs. 1a–5a), associated fields
(Figs. 1b–5b), and potential curvatures (Figs. 1c–5c) is
due basically to the continuous intermittent interplay
of the self-gravitational attraction (inflow) and electro-
static repulsion (outflow) contributed by various con-
stituent particles of the cloud. Moreover, the closed-
form structures of the electrostatic phase portraits
(Figs. 1d–3d) contributed by the Coulombic particles
and self-gravitational phase portraits (Figs. 4d–5d)
contributed by the Newtonian particles show that the
gravito-electrostatic fluctuation dynamics evolves as a
conservative dynamical (KdV) system. This may, in
addition, be noted that the self-consistent nonlinear
source arising in the electrostatic d-KdV equation has
a strength (∼10−20, estimated with all the standard
values of the relevant normalized parameters [11]) too
small to affect the conservative fluctuation dynamics.

8. Lastly, for quantitative comparison, let us consider
the HII region for which Tp = 104 K ∼ 1 eV
so that Tp/e ∼ 1 V [11], and ε ∼ 10−2 [16].
From Figures 1a–3a, Φ1 ∼ 10−3, which is phys-
ically φphys ∼ εΦ1 ∼ 10−5 V. Again from Fig-
ure 4a–5a, Ψ1 ∼ 10−3, which is physically ψphys ∼
εΨ1 ∼ 10−5 V (on the same electrostatic equiva-
lence units). Thus, φphys/ψphys ∼ 1, and so, the
gravito-electrostatic fluctuation scales overlap. This il-
lustrates that in a collapsing cloud, the grains with
such characteristics may exist in the inner region
of the protostellar disk, as the grain-size always in-
creases towards the central condensation. This is in
good correspondence with the earlier results valid for
comparable gravito-electrostatic strengths contributed
by the grains not too massive [5,6]. The grains of
similar features are expected to successfully explain
most of the observational dynamics of galaxies like
magneto-gravitational instabilities [21] and disparate
astrophysical environments [8–13,18–32].
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(c)                                                                                         (d) 
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Fig. 4. Profile of the lowest-order perturbed self-gravitational (a) potential, (b) field, (c) potential curvature, and (d) phase
portrait. Various lines correspond to case (1): ndn0 = 5.90 × 107 m−3 (blue line), case (2): ndn0 = 1.20 × 108 m−3 (red line),
case (3): ndn0 = 1.81 × 108 m−3 (green line), and case (4): ndn0 = 2.42 × 108 m−3 (black line), respectively. Different input
initial values used are (Ψ)i = 1.00 × 10−7, (Ψρ)i = −2.00 × 10−7, and (Ψρρ)i = 1.00 × 10−3. The other parameters kept fixed
are μ = 0.96, ndn0 = 2.42 × 108 m−3, ndc0 = 6.43 × 106 m−3 and md = 8.28 × 10−12.

7 Conclusions

We develop a simplified theoretical evolutionary model
to analyze the coexcitation of different nonlinear gravito-
electrostatic eigenmodes supported in a field-free planar
(1D) DMC in presence of dust-charge fluctuation, con-
vection and collision on the astrophysical scale. First, we
construct the normalized set of the basic structure equa-
tions in a coupled form using the Jeans assumption of
self-gravitating homogeneous medium. Then, a standard
methodology of multiple scaling technique is used over
the cloud equilibrium to derive the eigenmode evolution
equations. It is shown that the electrostatic eigenmodes
appear in the form of solitary spectral patterns collec-
tively governed by a unique d-KdV equation containing a
self-consistent nonlinear driving source arising due to de-
viation from quasi-neutrality. The self-gravitational fluc-
tuations, on the other hand, are proved to evolve like a
similar solitary pattern, but dictated by a KdV equation

without any source. In addition, exact numerical (by the
fourth-order Runge-Kutta method) forms of the coexist-
ing distinct classes of the eigenmodes are derived. The as-
sociated field fluctuations, perturbed potential curvatures,
and phase potraits are studied with multi-parameter vari-
ation in detail. We see that the gravito-electrostatic eigen-
modes evolve like a conservative system against weak fluc-
tuations (≤ the 3rd order).

Although simplified and idealized in methodologies,
our proposed model calculations allow us to draw the fol-
lowing main conclusive remarks having new astrophysical
significance.

1. The nonlinear gravito-electrostatic eigenmodes sup-
ported in a planar field-free self-gravitating DMC
in quasi-neutral hydrodynamic equilibrium are col-
lectively governed by a new pair of the KdV-type
equations (electrostatic d-KdV, and self-gravitational
KdV), instead of a single nonlinear evolution equation,
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(c)                                                                                         (d) 

(b) 

Fig. 5. Same as Figure 4, but with md = 8.28 × 10−12 kg. Various lines correspond to case (1): μ = 0.32 (blue line), case (2):
μ = 0.53 (red line), case (3): μ = 0.74 (green line), and case (4): μ = 0.96 (black line), respectively.

obtained by multiscale analyses under the frame-
work of the point-mass (Newtonian) and point-charge
(Coulombic) approximations within the nonrelativistic
limit of usual classical theory.

2. Various nonlinear eigenmode structures of the KdV-
family like compressive (hump) solitons and soliton-
chains as wide-range solitary spectral patterns are
found to coevolve and co-propagate in such a system
amidst small-amplitude approximation (weak nonlin-
earity and dispersion) within some judiciously chosen
realistic plasma conditions.

3. The new eigenmode structures of the cloud are con-
tributed by the collective gravito-electrostatic dynam-
ics of the inertial species and thermal species amidst
an integrated interplay of diverse nonlinear (hydro-
dynamic in origin), dispersive (self-gravitational in
origin) and weakly dissipative (collisional in origin)
effects.

4. The intrinsic conservative dynamics involved in the
KdV systems is well satisfied in our model in spite

of the inclusion of the grain-charge fluctuation and
various collisions on the lowest-order perturbations
in quasi-neutral hydrodynamic equilibrium configura-
tion (due to closed structural form of various obtained
phase portraits).

5. The proposed model investigation, although idealized
in time-stationary regime, shows scopes for further im-
provement to understand the temporal evolution of the
eigenmodes in presence of various spatio-temporal in-
homogeneities in a more refined manner.

6. This is accentuated that the electrostatic eigenmodes
have strengths comparable with those of the self-
gravitational ones on common unit base of compari-
son (in terms of the plasma thermal potential). This,
however, is legitimate for the grains which are not too
huge, as their charge-to-mass ratios are too high to
make the Coulomb and self-gravitational potentials, or
forces fully comparable in strength. Grains exhibiting
such characteristics normally reside in the inner part
of the cloud, and hence, this comparison, in principle,
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holds good for the internal denser region of the cloud
structure under consideration.

7. The observed eigenmode signatures of the gravito-
electrostatic origin, more particularly, different soli-
tary spectral patterns and spectral transitions of
the KdV-family of astrophysical importance, are in
partial and qualitative correspondence with various
multispace satellite observations, imaging detections
and experimental laboratory findings with or with-
out self-gravity reported so far in available litera-
ture [5–7,18–29]. Additionally, in laboratory scale too,
such observational features of the nonlinear normal
mode behavior in dust-contaminated plasmas are re-
ported for existence in Q-machine devices under differ-
ent conditions [30,31]. In such experimental findings,
the most important dissipative processes behind shock-
like structure formation are the charging of dust grains,
the absorption of ions by grains, and the transfer of
the ion momentum to the grains like in our proposed
analyses.

8. For a more creative and comprehensive understand-
ing of the evolving fluctuation dynamics, our model
needs to be elaborated incorporating grain rotations,
magnetic field, non-identical grains, diffusion, viscos-
ity, grain-size distribution, etc. [14–24]. Exploration on
the key processes behind how molecular cloud com-
plexes are formed by accumulation of matter along
magnetic flux tubes [24] may be an added future di-
rection for further interesting study.

9. Moreover, our pulsational mode analyses based on
the grainy Coulomb collisions in presence of grain-
charge fluctuations may give rise to a new acceleration
mechanism called charge-fluctuation-induced acceler-
ation (in hydrodynamic approach), or Fermi accel-
eration (in magnetohydrodynamic formalism) in as-
trophysical plasma and space environments [23]. This
novel mechanism is likely to affect the rate of grain
flow, coagulation and shattering of the population den-
sity of small grains (radial size ∼0.10 μm). As per the
law of conservation of energy, the new energy sources
for this kind of acceleration mechanism come from the
various irreversible plasma processes (triggered by the
interaction of the electron and ion currents) occur-
ring on the grain surfaces in the background plasma
configuration.

10. Lastly and most importantly, although simplified and
idealized, the adopted methodologies, strategic tech-
niques and analyses may extensively be useful as
the crucial role players in the form of input ele-
ments in further investigating the basic features of the
self-gravitational collapse, formation and evolution of
stars, galactic structures and other cluster-like astro-
physical objects in different practical regimes of space
and plasma environments.
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