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Abstract. A new protocol for quantum lithography is presented. A formula which describes the single-
quantum bound-free transition to the center of the continuous spectral zone under the action of two
monochromatic photon beams is obtained. The derivation is based on the Markov approximation and
takes into account all orders of the interaction parameter. The probabilities of bound-free transition for
several initial field states are represented: N-photon, entangled N-photon and coherent states cases. The
possibility of obtaining thin geometric structures on the surface of photoresist is discussed.

1 Introduction

Optical lithography is an important tool of the semicon-
ductor industry which makes it possible to create fine
structures on the surface of substrates. New methods
which improve the resolution of lithography and overcome
the Rayleigh diffraction limit are presented. The differ-
ent version of semi-classical optical lithography (classical
description of light and quantum mechanical description
the substrate) is presented in references [1–5]. In refer-
ences [1–4] it is shown that the resolution of lithogra-
phy processes can be increased by the use of substrates
with a nonlinear (multiphoton) coefficient of absorption
(N -photon substrates). So, references [1,2] suggest irradi-
ating a two-photon substrate with three-frequency light
whose frequencies satisfy a two-photon resonance condi-
tion. It has been shown that the distance between the
stripes of an interference pattern can be reduced to λ/4.
In references [3,4] the alternative method which uses in-
terference between short pulses on a two-photon substrate
was presented. Resolution of λ/4 may be obtained using
lithographic material with a narrow spectral absorption
bandwidth and pulses with durations shorter than the life-
time of atomic excitation. In reference [5] has been shown
that the high-frequency Rabi oscillations, caused by short
driving pulses of light, can form a contrasting interfer-
ence pattern on the surface of substrate with N -photon
absorption.

The quantum interference of photon states is found
to be a new direction of quantum optics, which was called
quantum lithography. A recent review devoted to this field
can be found in reference [6]. In references [7–10] it is
shown that the quantum entangled N photon states of
light can be used to increase the resolution of classical
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photolithography. It is possible to increase the resolution
of optical instruments up to a value of λ

2N using an entan-
gled N00N state, with |N00N〉 = |N,0〉+|0,N〉√

2
. Here λ is

the emission wavelength and N is the number of photons
in the considered entangled state. Reference [10] presents
the results of an experiment with a two-photon N00N
state. In this work it is shown that resolution higher than
the Rayleigh diffraction limit may be obtained. One dif-
ficult implementation of N -photon lithography is the de-
velopment of photoresists which allow N -photon sensitiv-
ity. In optical lithography, different types of photoresists
are used [11]. Photoresists are chemical substances whose
chemical and physical properties are changed by the ac-
tion of light. For example, photoresists formed from ortho-
naphthoquinone or diazide- novolak resins act by photo-
chemically dissociating to carbene and molecular nitrogen.
Photochemical dissociation starts the reaction of pho-
topolymerization. Atomic photoionization and molecular
photodissociation are consequences of transitions from a
bound state to a continuum spectrum state (bound-free
transition) [12]. Tunable laser radiation can selectively ex-
cite any quantum state of the atoms and molecules of
a certain type. Also, it is possible to selectively trans-
fer significant energy to the atom or molecule by mul-
tistage exitation, causing their selective photoionization,
photodissociation and other phototransformations [13].

Many aspects of quantum interference phenomena
with participating continuum spectrum states have been
investigated. For instance, the so-called Fano reso-
nances [14] are well documented in the literature; a recent
review can be found in reference [15]. Fano’s resonance is
revealed in the form of a sharp maximum in the absorp-
tion spectrum of inert gases, and also by the phenomenon
of antiresonance, when the ionization probability at a spe-
cific frequency is equal to zero. In references [16–19] the
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Fig. 1. Diagram of quantum lithography experiment. Two
field modes of E1 and E2 interfere on the photoresist, causing
the necessary photo transformations. BS – beamsplitter, PS –
phase plate, M – mirror.

methods for calculating the probabilities of bound-free
transitions for a quantum system from discrete states to
the continuum spectrum states are developed. Here the
following methods of calculations were used: a perturba-
tion theory, Markov approach, theory S-matrix and other
methods.

In this paper, the interference pattern of two quantized
field modes is studied, causing a single-photon transition
of a quantum system into a state of a zone of continu-
ous spectrum (bound-free transition). Nonlinear formu-
las of the one-photon transition probability were obtained
in the Markov [20] approximation for the different pho-
ton quantum states. Graphs of the probability against the
phase difference of the interfering fields are presented. The
plausibility of inducing thin geometric structures on the
substrate through interference patterns is discussed.

2 The probability of bound-free transitions
in the Markov approximation

Let us assume that two field modes (Fig. 1) interact with
the film. Both modes have identical polarizations which
are parallel to this film.

Mode wave vectors are denoted by k1, k2, |k1| =
|k2| = k. Under the influence of photons an electron jumps
from a bonding orbital to a continuum spectrum state
(antibonding orbital). This passage leads to the break-
ing of an intramolecular bond and to the starting of a
photochemical reaction in the film of photoresist. We sim-
plify the description of this complex photochemical pro-
cess by modeling the problem of the electron transition
from one discrete level with the vector |0〉 in a zone of
the continuous spectrum. The continuum spectrum states
are designated by |εν〉. The problem in this formulation
is considered in various contexts, for example, for describ-
ing the spectrum of autoionization [14], for the descrip-
tion of photodetection process [16], and for the analysis of
ionization probabilities of weakly bound electrons [17]. In
references [18,19] formulas for probabilities of bound-free
transitions are obtained for the single-photon ionization,

nonlinearly depending on an exciting field. In contrast,
the electromagnetic field in our work is assumed to be
quantized. The Hamiltonian of electrons, modes, and their
interaction takes the form

H =
∑

μ=1,2

ω â†
kμ

âkμ +
∑

ν

ΔE/2∑
ε=−ΔE/2

×
[(

ε + E0 +
ΔE

2

) ∣∣εν〉〈εν∣∣
+
∑

μ=1,2

(
fμ;εν

(
r
)∣∣εν〉〈0∣∣âkμ +

{
H.C

})]
. (1)

Here |εν〉 is the continuum spectrum state with the en-
ergy E = ε + E0 + ΔE

2 , ν represents additional quantum
numbers of the state in the continuous spectrum, |0〉 is the
vector of the ground state, orthogonal to the states of con-
tinuous spectrum, E0 is lower boundary of the continuous
spectrum and ΔE is the width of the energy band. Also,
fμ;εν (r) = dμ;εν exp i ((kμ, r) + ϕμ), dμ;εν is the param-
eter of interaction between modes and an electron which
transfer from the ground state to a continuum spectrum
state with the energy E, r is the coordinate of the atomic
nucleus, and ϕμ, (μ = 1, 2) are additional phases in the
beam. We will find the time evolution operator of the
atom-field system:

i
∂

∂t
W (t) = HW (t) , W (0) = I.

The time evolution operator in the resonance
representation is:

U (t) = exp

⎧⎨⎩i t
∑

ν

ΔE/2∑
ε=−ΔE/2

ω |εν〉 〈εν|
⎫⎬⎭

× exp

{
i t
∑

μ=1,2

ω â†
kμ

âkμ

}
W (t) .

The Hamiltonian in the resonance representation is:

HR =
∑

ν

ΔE/2∑
ε=−ΔE/2

[
ε |εν〉 〈εν|

+
∑

μ=1,2

(
fμ;εν(r)|εν〉〈0|âkμ + {H.C}

)]
.

The field frequency coincides with the transition frequency
to the center of the energy band:

ω = E0 +
ΔE

2
.
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We will decompose the time evolution operator in the
atomic basis |0〉 , |εν〉

U
(
t
)

=
∣∣0〉〈0∣∣U0,0 +

∑
ν

ΔE/2∑
ε=−ΔE/2

(
Uεν;0

∣∣εν〉〈0∣∣

+ U0;εν

∣∣0〉〈εν∣∣)+∑
ν,ν′

ΔE/2∑
ε,ε′=−ΔE/2

Uεν;ε′ν′
∣∣εν〉〈ε′ν′∣∣.

The system of equations for the matrix elements of the
time evolution operator is:

i
d

dt
U0,0 =

∑
ν

ΔE/2∑
ε=−ΔE/2

∑
μ=1,2

f∗
μ;εν(r)â†

kμUεν;0,

i
d

dt
Uεν;0 = εUεν;0 +

∑
μ=1,2

fμ;εν (r) âkμ
U0,0.

The initial conditions are:

U0,0|t=0 = I, Uεν;0|t=0 = 0.

The integro-differential equation for U0,0 has the following
form

d

dt
U0,0 = −2π

∑
μ,μ′=1,2

â†
kμ

âkμ′

t∫
0

1
2π

ΔE/2∑
ε=−ΔE/2

×
∑

ν

f∗
μ;εν (r) fμ′;εν (r) exp {i ε (t′ − t)}U0,0dt′.

The Markov approximation [20] is utilized to solve this
equation:

1. f∗
μ;εν (r) fμ′;εν (r) ≈ f∗

μ;0ν (r) fμ′;0ν (r) ,

2. ΔE sufficiently large,
3. g (ε) ≈ g (0) .

Here g (ε) is the density of states with the energy ε, g (0)
is the density of states in the center of band. We make the
transition from summation to integration in the energy
spectrum and obtain as a result

d

dt
U0,0 ≈ −2πΓ̂

t∫
0

δ (t − t′)U0,0dt′,

Γ̂ =
∑

μ,μ′=1,2

â†
kμ

âkμ′

∑
ν

f∗
μ;0ν (r) fμ′;0ν (r) g (0) ,

(2)

and
d

dt
U0,0 ≈ −πΓ̂U0,0,

and then

U0,0 = U0,0 (t) = exp
{
−πΓ̂ t

}
.

The probability of a bound-free transition is determined
by the formula

PBF (t) = 1 − Spf

(
ρf (0) exp

(
−2πΓ̂ t

))
. (3)

Here ρf (0) is the initial density matrix of field modes.
Supposed, that an atom at the initial moment is found
in the ground state. Let us study the properties of the
operator Γ̂ (2), which we write as:

Γ̂ = γ
(
N̂ + â†

1â2e
iϕ + â†

2â1e
−iϕ
)

.

Here

γ =

∣∣∣∣∣∑
ν

f∗
μ;0ν (r) fμ′;0ν (r) g (0)

∣∣∣∣∣ ,
ϕ = (k2 − k1 , r)+ϕ2−ϕ1 is the phase difference between
beams and N̂ = â†

1â1 + â†
2â2 is the photon number oper-

ator. We introduce operators corresponding to the su (2)
Lie algebra (S is the index of representation)

S− = â†
2â1, S+ = â†

1â2,

S0 =
â†
1â1 − â†

2â2

2
, S =

N

2
, S2 = S (S + 1) .

Operator Γ̂ takes the form

Γ̂ = γ
(
N̂ + S+eiϕ + S−e−iϕ

)
.

We introduce the notation of the eigenvectors of the
operator S0

S0 |S, m〉 = m |S, m〉 , N̂ |S, m〉 = 2S |S, m〉 = N |S, m〉 ,

− S � m � S.

The Fock and su (2) basis are related as follows:

|N − n, n〉F = |S, m〉 =
∣∣∣∣N2 ,

N

2
− n

〉
, n = 0, 1, . . . , N.

Γ̂ is then diagonalised

Γ̂d = V †Γ̂ V = γ
(
N̂ + 2S0

)
,

by a unitary transformation (transfer to the coherent
representation of the su (2) algebra [21])

V = exp (iϕS0) exp
(
−π

4
(S+ − S−)

)
.

The spectrum and the eigenvectors of the operator Γ̂ are

Γ̂ exp (iϕS0)
∣∣ΓS,m〉 = 2γ(S + m) exp(iϕS0)|ΓS,m〉,
|ΓS,m〉 = exp

(
−π

4
(S+ − S−)

)
|S, m〉.
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Here |ΓS,m〉 are the coherent states of su (2). Equation (3)
for the probability can be written in the basis |ΓS,m〉.

PBF (t) = 1 −
∞∑

S=0

S∑
k=−S

exp (−4π (S + k) γt) 〈ΓS,k|

× | exp (−iϕS0) ρf (0) exp (iϕS0) |ΓS,k〉. (4)

Vector |ΓS,m〉 can be expanded in terms of the basis |S, m〉

|ΓS,m〉 = exp
(
−π

4
(S+ − S−)

)
|S, m〉

=
s∑

q=−S

〈S, q| exp
(
−π

4
(S+ − S−)

)
|S, m〉|S, q〉.

The matrix elements of the operator exp
(−π

4 (S+ − S−)
)

take the form [21]

〈S, q| exp
(
−π

4
(S+ − S−)

)
|S, m〉

= 2m (−1)q−m

√
(S + q)! (S + m)!
(S − q)! (S − m)!

×
S+m∑

p=max{0,m−q}

(
−1

2

)p (S − m + p)!
p! (S + m − p)! (q + p − m)!

.

The vector |ΓS,−S〉, which corresponds to zero eigenvalue,
takes the following form in the Fock basis

|ΓS,−S〉 =
(

1√
2

)N N∑
n=0

(−1)n

√
N !

(N − n)!n!
|n, N − n〉F

=
1√
N !

(
−â†

1 + â†
2√

2

)N

|0〉F .

3 Nonlinear antiresonance on bound-free
transitions

We calculate and graph the probability PBF (t) (4) for
several photon states. We choose the initial pure N -photon
state of two modes |N〉 = exp (iϕ0S0) |ΓS,−S〉. The initial
density matrix takes the form

ρf (0) = |N〉 〈N | . (5)

It is easy to obtain this state, after passing the N -photon
state of the first mode |N, 0〉F through the beam split-
ter BS and the phase plate PS with the transfer matrix
PS × BS (Fig. 1)(

â†
1

â†
2

)
in

= PS × BS

(
â†
1

â†
2

)

=

(
exp

(
i
2ϕ0

)
0

0 exp
(−i

2ϕ0

))
⎛⎝− 1√

2
1√
2

1√
2

1√
2

⎞⎠( â†
1

â†
2

)
.
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Fig. 2. Probability PBF (t) as a function of the phase differ-
ence ϕ of the interfering beams. Initial state of the two modes:

|N〉 = 1√
N!

(
−â

†
1+â

†
2√

2

)N

|0〉F . Number photons: N = 15. Initial

phase: ϕ0 = 0. Graph 1 – γt → ∞, graph 2 – γt = 0.01, graph
3 – γt = 0.001.

Then the probability PBF (t) will depend on the phase
difference ϕ − ϕ0

PBF (t) = 1 −
S∑

k=−S

exp (−4π(S + k)γt)

× |〈ΓS,k| exp(−i(φ − φ0)S0)|ΓS,−S〉|2, S =
N

2
.

(6)

In the asymptotic limit 4πγt � 1 and the k = −S term
dominates the sum, giving

PBF (t) = 1 − |〈ΓS,−S | exp (−i (φ − φ0)S0) |ΓS,−S〉|2

= 1 −
(

cos
φ − φ0

2

)2N

. (7)

Equation (7) describes narrow interference hole (antires-
onance) of probability when ϕ ≈ ϕ0. The half-width at
half-height of the hole Δϕ (ξ) depends on N

Δϕ ≈
√

2
N

.

The graphs dependence of PBF (t) on a phase difference ϕ
for several values of the exposure time are represented
in Figure 2. The graphs are calculated by equations (6)
and (7) for the initial density matrix (5).

Now we select the initial pure entangled N -photon
state of two modes (N00N state)

|N〉 = |N00N〉 =
|N, 0〉F + |0, N〉F√

2
=

|S,−S〉 + |S, S〉√
2

.

(8)
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Fig. 3. Probability PBF (t) as a function of the phase differ-
ence ϕ of the interfering beams. Initial state of the two modes:

|N00N〉 =
|N,0〉F +|0,N〉F√

2
. Initial phase: ϕ0 = 0. Graph 1 –

γt → ∞, N = 2, graph 2 – γt = 0.05, N = 2, graph 3 –
γt = 0.02, N = 2, graph 4 – γt → ∞, N = 3.

We substitute (8) into (4) and obtain

PBF (t) = 1 −
(

1
2

)N ((
1 + e−4πγt

)N
+ (−1)N

(
1 − e−4πγt

)N
cos (ϕN)

)
. (9)

In the asymptotic limit 4πγt � 1 we have

PBF (t) = 1 −
(

1
2

)N (
1 + (−1)N cos (ϕN )

)
. (10)

With an increase in the number of photons the fringe
width λ

2N decreases and the visibility of the interference
pattern 2−N

1−2−N at the same time substantially decreases.
The graphs dependence of PBF (t) on the phase differ-
ence ϕ for several values of the exposure time are repre-
sented in Figure 3. The graphs are calculated from equa-
tions (9) and (10) for the initial density matrix (8).

We examine the initial coherent state of two modes
with amplitudes ξ1 and ξ2

ρf (0) = |ξ1, ξ2〉〈ξ1, ξ2|, |ξ1, ξ2〉 = e−
ξ2
1+ξ2

2
2

×
∞∑

S=0

S∑
m=−S

(ξ1ξ2)S√
(S + m)!(S − m)!

|S, m〉. (11)

Then the ionization probability is:

PBF (t) = 1 −
∞∑

S=0

S∑
k=−S

exp (−4π (S + k) γt) |〈ΓS,k|

× exp (−iϕS0) |ξ1, ξ2〉|2

= 1 − exp

{
− 1 − exp

(− 4πγt
)

2

(
|ξ1|2 + |ξ2|2

+ ξ∗1ξ2e
iϕ + ξ∗2ξ1e

−iϕ
)}

. (12)

For short times t we obtain Fermi’s golden rule, and also
Mandel’s formula for the photodetection rate [22]

PBF (t)
t

≈ 2πγ
(|ξ1|2 + |ξ2|2 + ξ∗1ξ2e

iϕ + ξ∗2ξ1e
−iϕ
)
.

For the case |ξ1| = |ξ2| = |ξ|, we obtain the known formula
for the interference pattern

PBF (t)
t

≈ 4πγ |ξ|2 (1 + cos (ϕ − δ)) . (13)

Here δ is the phase difference of the coherent amplitudes
ξ1 and ξ2. In equation (13) the bandwidth of the interfer-
ence fringes does not depend on the light intensity. In the
asymptotic limit 4πγt � 1 we have

PBF (t) −−−→
t→∞ 1 − exp

(
− |ξ|2 (1 + cos (ϕ − δ))

)
. (14)

In contrast to (13), equation (14) describes a narrow in-
terference hole (antiresonance) in the probability around
ϕ−δ ≈ π. The half-width at half-height of the hole Δϕ (ξ)
depends on the average number of photons in the mode

Δϕ (ξ) ≈
√

ln 4
|ξ| .

The graphs dependence of PBF (t) on the phase differ-
ence ϕ for several values of the exposure time are repre-
sented in Figure 4. Graphs are calculated from equations
(12) and (14) for the initial density matrix (11).

4 Conclusion

The purpose of an optical lithography is to create a
thin geometric structure on the surface of the substrate.
Diffraction of light diffuses the structure, the edges of
stripes have low contrast, and the distances between
the stripes are limited by the diffraction limit. In refer-
ences [1–10] several methods of overcoming the diffraction
limit are proposed. In our work the new protocol of quan-
tum lithography is formulated. The interference of two
quantized modes, which interact with the substrate, and
which cause the single-quantum transition of molecules
into the continuum spectrum states (bound-free transi-
tion) is investigated. We obtained equation (3), which de-
scribes a sigle-quantum bound-free transition to the center
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Fig. 4. Probability PBF (t) as a function of the phase dif-
ference ϕ of the interfering beams. Initial state of the two

modes: |ξ, ξ〉 = e−ξ2 ∞∑
S=0

S∑
m=−S

(ξ)2S√
(S+m)!(S−m)!

|S, m〉. The av-

erage number of photons in the coherent state: ξ2 = 25. Initial
phase: δ = 0. Graph 1 – γt → ∞, graph 2 – γt = 0.002, graph
3 – γt = 0.0002.

of the continuous spectrum zone under the action of two
monochromatic beams of photons. The derivation is based
on the Markov approximation and takes into account all
orders of the interaction parameter. An image on the pho-
toresist is formed during irradiation with ultraviolet light
at a wavelength of 250 nm [11]. Characteristic radiation
doses were around 5× 10−2 J/cm2. With the aid of equa-
tion (12) it is possible to obtain the dependence of the
average number of photons in the mode n (t) = ξ2 on the
time of exposure with the fixed values PBF (t) = Pcr and
Δϕ (ξ, t) = Δϕcr

n (t) =
− ln (1 − Pcr)

2
(
sin
(

Δϕcr

2

))2

(1 − exp (−4πγt))
. (15)

Figure 5 shows dependence n (t) on a time exposure γt
with Pcr = 0.8 and three values of the half-width of an-
tiresonance Δϕcr = 0.005, 0.008, 0.02.

Equation (15) gives the possibility to select the expo-
sure time in the dependence on the parameter γ and the
photon numbers in the mode so as to obtain a narrow
stripe in the photoresist on the substrate where the poly-
merization reaction does not passed. The described proto-
col can be used in two ways. For the negative photoresists
this protocol makes it possible to create on the substrate
a stripe with a width of λ

2 and sharp contrast edges. For a
positive photoresists, due to the nonlinearity, thin stripes
can be formed on the substrate with a width that is smaller
than wavelength, but the distance between these stripes is
equal to λ

2 . With the use of N00N photon states it is pos-
sible to obtain surface structures with high resolution λ

2N ,
but with a visibility 1

2N−1 . The proposed protocol comple-
ments and extends the capabilities of the protocols pro-
posed in the above-mentioned works. The effect presented
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Fig. 5. Average number of photons n(t) = ξ2 in the mode at
the exposure time γt with fixed values Pcr = 0.8 and Δϕcr =
0.005, 0.008, 0.02. The initial state of the two modes are co-

herent |ξ, ξ〉 = e−ξ2 ∞∑
S=0

S∑
m=−S

(ξ)2S√
(S+m)!(S−m)!

|S, m〉. Graph 1 –

Δϕcr = 0.005, graph 2 – Δϕcr = 0.008, graph 3 – Δϕcr = 0.02.

here can be used to increase the resolution of the pho-
tolithography process.
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