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Abstract. We show that the vacuum permeability μ0 and permittivity ε0 may originate from the magneti-
zation and the polarization of continuously appearing and disappearing fermion pairs. We then show that
if we simply model the propagation of the photon in vacuum as a series of transient captures within these
ephemeral pairs, we can derive a finite photon velocity. Requiring that this velocity is equal to the speed
of light constrains our model of vacuum. Within this approach, the propagation of a photon is a statistical
process at scales much larger than the Planck scale. Therefore we expect its time of flight to fluctuate. We
propose an experimental test of this prediction.

1 Introduction

The vacuum permeability μ0, the vacuum permittivity ε0,
and the speed of light in vacuum c are widely considered
as being fundamental constants and their values, escaping
any physical explanation, are commonly assumed to be
invariant in space and time. In this paper, we propose a
mechanism based upon a “natural” quantum vacuum de-
scription which leads to sensible estimations of these three
electromagnetic constants. A consequence of this descrip-
tion is that μ0, ε0 and c are not fundamental constants but
observable parameters of the quantum vacuum: they can
vary if the vacuum properties vary in space or in time. A
similar analysis of the quantum vacuum, as the physical
origin of the electromagnetism constants, has been pro-
posed independently by Leuchs et al. [1]. Although the two
mechanisms are different, the original idea is the same: the
physical electromagnetic constants emerge naturally from
the quantum theory.

The paper is organized as follows. First we describe our
model of the quantum vacuum filled with continuously ap-
pearing and disappearing fermion pairs. We show how μ0

and ε0 originate respectively from the magnetization and
the electric polarization of these pairs. We then derive the
photon velocity in vacuum by modeling its propagation
as a series of interactions with the pairs. Finally, we pre-
dict statistical fluctuations of the transit time of photons
across a fixed vacuum path.

2 An effective description of the quantum
vacuum

The vacuum is assumed to be filled with continu-
ously appearing and disappearing charged fermion pairs
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(ephemeral particle-antiparticle pairs). We consider nei-
ther intermediate bosons nor supersymmetric particles.
All known species of charged fermions are taken into ac-
count: the three families of charged leptons e, μ and τ and
the three families of quarks (u, d), (c, s) and (t, b), includ-
ing their three color states. This gives a total of 21 pair
species, noted i.

An ephemeral fermion pair is assumed to be the prod-
uct of the fusion of two virtual photons of the vacuum.
Thus its total electric charge and total color are null. We
suppose also that the spins of the two fermions of a pair
are antiparallel, and that they are on their mass shell.
The only quantity which is not conserved is therefore the
energy and this is the reason for the limited lifetime of
the pairs. We assume that first order properties can be
deduced assuming that pairs are created with an average
energy, not taking into account a full probability density
of the pairs kinetic energy. Likewise, we will neglect the
total momentum of the pair.

The average energy Wi of a pair is taken proportional
to its rest mass energy 2mic

2
rel, where crel is the maxi-

mum velocity introduced in the Lorentz transformation.
We remind that crel is not necessarily equal to the speed
of light. We note:

Wi = KW 2mic
2
rel, (1)

where KW is a constant, assumed to be independent from
the fermion type. We take KW as a free parameter; its
value could be calculated if we knew the energy spectrum
of the virtual photons together with their probability to
create fermion pairs.

As a reminiscence of the Heisenberg principle, the pairs
lifetime τi is assumed to be given by

τi =
�

2Wi
=

1
KW

�

4mic2
rel

. (2)
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We assume that the ephemeral fermion pairs densities Ni

are driven by the Pauli exclusion principle. Two pairs con-
taining two identical fermions in the same spin state can-
not show up at the same time at the same place. However
at a given location we may find 21 charged fermion pairs
since different fermions can superpose spatially. In solid
state physics the successful determination of Fermi ener-
gies [2] implies that one electron spin state occupies a hy-
per volume h3. We assume that concerning the Pauli prin-
ciple, the ephemeral fermions are similar to the real ones.
Noting Δxi the spacing between identical i-type fermions
and pi their average momentum, the one dimension hyper
volume is piΔxi and dividing by h should give the num-
ber of states which we take as one per spin degree of free-
dom. The relation between pi and Δxi reads piΔxi/h = 1,
or Δxi = 2π�/pi.

We can express Δxi as a function of Wi if we suppose
the relativity to hold for the ephemeral pairs

Δxi =
2π�crel√

(Wi/2)2 − (mic2
rel)2

=
λCi√

K2
W − 1

, (3)

where λCi is the Compton length associated to fermion i
and is given by:

λCi =
h

micrel
. (4)

The pair density is defined as:

Ni ≈ 1
Δx3

i

=

(√
K2

W − 1
λCi

)3

. (5)

Each pair can be produced only in the two fermion-
antifermion spin combinations up-down and down-up.
We define Ni as the density of pairs for a given spin
combination.

Finally, we use the notation Qi = qi/e, where qi is the
i-type fermion electric charge and e the modulus of the
electron charge.

3 The vacuum permeability

When a torus of a material is energized through a winding
carrying a current I, the resulting magnetic flux density B
is expressed as:

B = μ0nI + μ0M, (6)

where n is the number of turns per unit of length and nI
is the magnetic intensity in A/m. M is the correspond-
ing magnetization induced in the material and is the sum
of the induced magnetic moments divided by the corre-
sponding volume. In an experiment where the current I is
kept a constant and where we lower the quantity of mat-
ter in the torus, B decreases. As we remove all matter,
B gets to a non zero value: B = μ0nI showing experi-
mentally that the vacuum is paramagnetic with a vacuum
permeability μ0 = 4π 10−7N/A2.

We propose a physical mechanism to produce the vac-
uum permeability from the elementary magnetization of

the charged fermion pairs under a magnetic stress. Each
charged ephemeral fermion carries a magnetic moment
proportional to the Bohr magneton

μi =
e Qi�

2mi
=

e Qi crel λCi

4π
. (7)

We assume the orbital moment and the spin of the pair to
be zero. Since the fermion and the anti fermion have op-
posite electric charges, the pair carries twice the magnetic
moment of one fermion.

If no external magnetic field is present, the magnetic
moments point randomly in any direction resulting in a
null global average magnetic moment. In the presence of
an external magnetic field B, the coupling energy of the
i-type pair to this field is −2μiB cos θ, where θ is the angle
between the magnetic moment and the magnetic field B.
The energy of the pair is modified by this term and the
pair lifetime is therefore a function of the orientation of
its magnetic moment with respect to the applied magnetic
field:

τi(θ) =
�/2

Wi − 2μiB cos θ
. (8)

The pairs having their magnetic moment aligned with the
field last a bit longer than the anti-aligned pairs. The re-
sulting average magnetic moment 〈Mi〉 of a pair is there-
fore different from zero1 and is aligned with the applied
field. Its value is obtained integrating over θ with a weight
proportional to the pairs lifetime:

〈Mi〉 =

∫ π

0 2μi cos θ τi(θ) 2π sin θ dθ∫ π

0 τi(θ) 2π sin θ dθ
. (9)

To first order in B, one gets:

〈Mi〉 � 4μ2
i

3Wi
B. (10)

The magnetic moment per unit volume produced by the
i-type fermions is Mi = 2Ni〈Mi〉, since one takes into ac-
count the two spin states per cell. The contribution μ̃0,i

of the i-type fermions to the vacuum permeability is
thus given by B = μ̃0,iMi or 1/μ̃0,i = Mi/B. Each
species of fermions increases the induced magnetization
and therefore the magnetic moment. By summing over
all pair species, one gets the estimation of the vacuum
permeability:

1
μ̃0

=
∑

i

Mi

B
= c2

rel

e2

6π2

∑
i

NiQ
2
i λ

2
Ci

Wi
. (11)

Using equations (1), (4) and (5) and summing over all pair
types, one obtains

μ̃0 =
KW

(K2
W − 1)3/2

24π3
�

crel e2
∑

i Q2
i

. (12)

1 As a referee puts it: “This is a kind of averaged Zeeman
effect”.
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The sum
∑

i Q2
i is taken over all pair types. Within a gen-

eration, the absolute values of the electric charges are 1,
2/3 and 1/3 in units of the positron charge. Thus for one
generation the sum writes (1 + 3× (4/9 + 1/9)). The fac-
tor 3 is the number of colours. Hence, for the three families
of the standard model ∑

i

Q2
i = 8. (13)

One obtains:

μ̃0 =
KW

(K2
W − 1)3/2

3π3
�

crel e2
. (14)

The calculated vacuum permeability μ̃0 is equal to the
observed value μ0 when

KW

(K2
W − 1)3/2

= μ0
crel e

2

3π3�
=

4
3

α

π2
, (15)

which is obtained for KW ≈ 31.9.
Such a KW value indicates that the typical fermions

are produced in relativistic states. This estimation is
based upon a static and average description of vacuum.
A more complete view, including probability densities on
pair energy and momentum distributions might allow to
give a physical meaning to the KW value. For instance,
e+e− pairs with a total energy distributed as dW/W 2 up
to Wmax would give an apparent KW of the order of

KW � Log
(

Wmax

2mec2

)
� 51,

if Wmax corresponds to the Planck energy.

4 The vacuum permittivity

Consider a parallel-plate capacitor with a gas inside.
When the pressure of the gas decreases, the capacitance
decreases too until there are no more molecules in between
the plates. The strange thing is that the capacitance is not
zero when we hit the vacuum. In fact the capacitance has
a very sizeable value as if the vacuum were a usual ma-
terial body. The dielectric constant of a medium is com-
ing from the existence of opposite electric charges that
can be separated under the influence of an applied elec-
tric field E. Furthermore the opposite charges separation
stays finite because they are bound in a molecule. These
opposite translations result in opposite charges appearing
on the dielectric surfaces in regard to the metallic plates.
This leads to a decrease of the effective charge, which im-
plies a decrease of the voltage across the dielectric slab
and finally to an increase of the capacitance. In our model
of the vacuum the ephemeral charged fermion pairs are
the pairs of opposite charge and the separation stays fi-
nite because the electric field acts only during the lifetime
of the pairs. In an absolute empty vacuum, the induced
charges would be null because there would be no charges

to be separated and the capacitance of a parallel-plate ca-
pacitor would go to zero when one removes all molecules
from the gas.

We show here that our vacuum filled by ephemeral
fermions causes its electric charges to be separated and to
appear at the level of 5 × 107 electron charges per square
meter under an electric stress E = 1 V/m. The mechanism
is similar to the one proposed for the permeability. How-
ever, we must assume here that every fermion-antifermion
ephemeral pair of the i-type bears a mean electric dipole di

given by:
di = Qieδi, (16)

where δi is the average separation between the two
fermions of the pair. We assume that this separation does
not depend upon the fermion momentum and we use the
reduced Compton wavelength of the fermion λCi/(2π) as
this scale:

δi � λCi

2π
. (17)

If no external electric field is present, the dipoles point
randomly in any direction and their resulting average field
is zero. In presence of an external electric field E, the
mean polarization of these ephemeral fermion pairs pro-
duce the observed vacuum permittivity ε0. This polariza-
tion shows up due to the dipole lifetime dependence on the
electrostatic coupling energy of the dipole to the field. In a
field homogeneous at the δi scale, this energy is diE cos θ
where θ is the angle between the ephemeral dipole and
the electric field E. The electric field modifies the pairs
lifetimes according to their orientation:

τi(θ) =
�/2

Wi − diE cos θ
. (18)

As in the magnetostatic case, pairs with a dipole moment
aligned with the field last a bit longer than the others.
This leads to a non zero average dipole 〈Di〉, which is
aligned with the electric field E and given, to first order
in E, by:

〈Di〉 � d2
i

3Wi
E. (19)

We estimate the permittivity ε̃0,i due to i-type fermions
using the relation Pi = ε̃0,iE, where the polarization Pi is
equal to the dipole density Pi = 2Ni〈Di〉, since the two
spin combinations contribute. Thus:

ε̃0,i = 2Ni
〈Di〉
E

= 2Nie
2 Q2

i δ
2
i

3Wi
. (20)

Each species of fermion increases the induced polarization
and therefore the vacuum permittivity. By summing over
all pair species, one gets the general expression of the vac-
uum permittivity:

ε̃0 =
2e2

3

∑
i

NiQ
2
i δ

2
i

Wi
=

e2

6π2

∑
i

NiQ
2
i λ

2
Ci

Wi
. (21)

Expressing the model parameters from equations (1), (4),
(5), and (13), one gets:

ε̃0 =
(K2

W − 1)3/2

KW

e2

3π3�crel
. (22)
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If we now use the value KW given in equation (15)
obtained from the derivation of the permeabilitty, one
gets the right numerical value for the permittivity:
ε̃0 = 8.85 × 10−12F/m.

We verify from equations (11) and (21) that the phase
velocity cφ of an electromagnetic wave in vacuum, given
by cφ = 1/

√
μ̃0ε̃0, is equal to crel the maximum velocity

used in special relativity.
We also notice that the permeability and the permit-

tivity do not depend upon the masses of the fermions.
The electric charges and the number of species are the
only important parameters. This is in opposition to the
common idea that the energy density of the vacuum is
the dominant factor [3].

5 The propagation of a photon in vacuum

We now study the propagation of a real photon in vacuum
and we propose a mechanism leading to a finite average
photon velocity cgroup, which must be equal to cφ and crel.

When a real photon propagates in vacuum, it interacts
with and is temporarily captured by an ephemeral pair.
As soon as the pair disappears, it releases the photon to
its initial energy and momentum state. The photon con-
tinues to propagate with an infinite bare velocity. Then the
photon interacts again with another ephemeral pair and
so on. The delay on the photon propagation produced by
these successive interactions implies a renormalisation of
this bare velocity to a finite value.

This “leapfrog” propagation of photons, with instan-
taneous leaps between pairs, seems natural since the only
length and time scales in vacuum come from fermion pair
lifetimes and Compton lengths. This idea is far from being
a new one, as can be found for instance in reference [4].

By defining σi as the cross-section for a real photon to
interact and to be trapped by an ephemeral i-type pair of
fermions, the mean free path of the photon between two
successive such interactions is given by:

Λi =
1

σiNi
, (23)

where Ni is the numerical density of virtual i-type pairs.
Travelling a distance L in vacuum leads on average

to Nstop,i interactions on the i-type pairs, given by:

Nstop,i =
L

Λ
= LσiNi. (24)

The photon may encounter the pair any time between its
appearence and disappearence. The life time of a pair be-
ing τi, the photon will be stopped for an average time τi/2.
Each type of fermion pair contributes in increasing the
propagation time of the photon. So, the total mean time T
for a photon to cross a length L is:

T =
∑

i

Nstop,i
τi

2
. (25)

Using equation (24), we obtain the average photon veloc-
ity cgroup as a function of three parameters of the vacuum
model:

cgroup =
L

T
=

1∑
i σiNiτi/2

. (26)

Using equations (2) and (5), we get the expression

cgroup =
KW

(K2
W − 1)3/2

16π∑
i (σi/λ2

Ci
)

crel. (27)

We now have to define the expression of the cross sec-
tion σi. We know that it should not depend on the photon
energy, otherwise the vacuum would become a dispersive
medium. Also the interaction of a real photon with a pair
must not exchange energy or momentum with the vacuum
(for instance, Compton scattering is not possible). We as-
sume the cross-section to be proportional to the geomet-
rical cross-section of the pair λ2

Ci
, and to the square of the

electric charge Q2
i . The cross-section is thus expressed as:

σi = kσQ2
i λ

2
Ci

, (28)

where kσ is a constant which does not depend on the type
of fermions.

The calculated photon velocity becomes:

cgroup =
KW

(K2
W − 1)3/2

16π

kσ

∑
i Q2

i

crel. (29)

Using equations (13) and (15), one finally get:

cgroup =
8α

3πkσ
crel. (30)

The calculated velocity cgroup of a photon in vacuum is
equal on average to crel when

kσ =
8
3π

α. (31)

It corresponds to a cross-section of 4 × 10−26 m2 on an
ephemeral electron-positron pair, of the same order as the
geometric transversal area of the pair, whose size is given
in equation (17).

We note that the photon velocity depends only on
the electrical charge units Qi of the ephemeral charged
fermions present in vacuum. It depends neither upon their
masses, nor upon the vacuum energy density. We also re-
mark that the average speed of the photon in our medium
being crel, the photon propagates, on average, along the
light cone. As such, the effective average speed of the
photon is independent of the inertial frame as demanded
by relativity. This mechanism relies on the notion of an
absolute frame for the vacuum at rest. It satisfies spe-
cial relativity in the Lorentz-Fitzgerald sense. This simple
model does not preclude some dependence of the speed of
light on the photon energy, through trapping cross-section
variations.
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6 Transit time fluctuations

An important consequence of our model is that stochastic
fluctuations of the propagation time of photons in vacuum
are expected, due to the fluctuations of the number of
interactions of the photon with the virtual pairs and to
the capture time fluctuations.

These stochastic fluctuations are not expected in stan-
dard Quantum Electrodynamics, which considers c as a
given, non fluctuating, quantity. Quantum gravity theo-
ries predict also stochastic fluctuations of the propagation
time of photons [5,6]. It has been also recently predicted
that the non commutative geometry at the Planck scale
should produce a spatially coherent space-time jitter [7].
We show here that our effective model of photon propaga-
tion predicts fluctuations at a higher scale, which makes
it experimentally testable with femtosecond pulses.

The propagation time T of a photon which crosses a
distance L of vacuum is:

T =
∑
i=1

Nstop,i∑
k=1

ti,k, (32)

where ti,k is the duration of the kth interaction on
i-type pairs and Nstop,i the number of such interactions.
The variance of T , due to the statistical fluctuations of
the number of interactions and the fluctuation of the cap-
ture time is given by:

σ2
T =

∑
i

(
σ2

Nstop,i
t
2
stop,i + Nstop,i σ2

t,i

)
, (33)

where tstop,i = τi/2 is the average stop time on a i-type
pair, σ2

t,i = τ2
i /12 its variance, and σ2

Nstop,i
= Nstop,i the

variance of the number of interactions. Hence:

σ2
T =

1
3

∑
i

Nstop,iτ
2
i =

L

3

∑
i

σiNiτ
2
i . (34)

Once reduced, the current term of the sum is proportional
to λCi . Therefore the fluctuations of the propagation time
are dominated by virtual e+e− pairs. Neglecting the other
fermion species, and using σeNeτe/2 = 1/(8c), one gets

σ2
T =

τe L

12c
=

λCeL

96πKW c2
. (35)

So

σT =

√
L

c

√
λCe

c

1√
96πKW

. (36)

In our simple model where KW = 31.9, the predicted fluc-
tuation is:

σT ≈ 5 × 10−2 fs m−1/2. (37)

We note that the fluctuations vary as the square root of
the distance L of vacuum crossed by the photons and are
a priori independent of the energy of the photons. It is
in contrast with expected fluctuations calculated in the
frame of Quantum-Gravitational Diffusion [6], which vary

linearly with both the distance L and the energy of the
photons.

A way to search for these fluctuations is to measure
a possible time broadening of a light pulse travelling a
distance L of vacuum. This may be done using observa-
tions of brief astrophysical events, or dedicated laboratory
experiments.

The strongest direct constraint from astrophysical ob-
servations is obtained with the very bright GRB 090510,
detected by the Fermi Gamma-ray Space Telescope [8],
at MeV and GeV energy scale. It presents short spikes in
the 8 keV−5 MeV energy range, with the narrowest widths
of the order of 4 ms (rms). Observation of the optical af-
ter glow, a few days later by ground based spectroscopic
telescopes gives a common redshift of z = 0.9. This corre-
sponds to a distance, using standard cosmological param-
eters, of about 2 × 1026 m. Assuming that the observed
width is correlated to the emission properties, this sets a
limit for transit time fluctuations σT of about 0.3 fs m−1/2.
It is important to notice that there is no expected disper-
sion of the bursts in the interstellar medium at this en-
ergy scale. If we move six orders of magnitude down in
distances we arrive to kpc and pulsars. Short microbursts
contained in main pulses from the Crab pulsar have been
recently observed at the Arecibo Observatory Telescope
at 5 GHz [9]. The frequency-dependent delay caused by
dispersive propagation through the interstellar plasma is
corrected using a coherent dispersion removal technique.
The mean time width of these microbursts after dedisper-
sion is about 1 μs, much larger than the expected broaden-
ing caused by interstellar scattering. Assuming again that
the observed width is correlated to the emission prop-
erties, this sets a limit for transit time fluctuations of
about 0.2 fs m−1/2.

The very fact that the predicted statistical fluctua-
tions should go like the square root of the distance implies
the exciting idea that experiments on Earth do compete
with astrophysical constraints since we expect fluctuations
in the femtosecond range at the kilometer scale. An ex-
perimental setup using femtosecond laser pulses sent to
a 100 m long multi-pass vacuum cavity equipped with
metallic mirrors could be able to detect this phenomenon.
With appropriate mirrors with no dispersion on the reflec-
tions, a pulse with an initial time width of 9 fs (FWHM)
would be broadened after 30 round trips in the cavity, to
an output time width of ∼13 fs (FWHM). An accurate
autocorrelation measurement could detect this effect.

7 Conclusions

We describe the ground state of the unperturbed vac-
uum as containing a finite density of charged ephemeral
fermions antifermions pairs. Within this framework, ε0
and μ0 originate simply from the electric polarization and
from the magnetization of these pairs when the vacuum
is stressed by an electrostatic or a magnetostatic field re-
spectively. Our calculated values for ε0 and μ0 are equal
to the measured values when the fermion pairs are pro-
duced with an average energy of about 30 times their
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rest mass. The finite speed of a photon is due to its suc-
cessive transient captures by these virtual particles. This
model, which proposes a quantum origin to the electro-
magnetic constants ε0 and μ0 and to the speed of light, is
self consistent: the average velocity of the photon cgroup,
the phase velocity of the electromagnetic wave cφ, given
by cφ = 1/

√
μ0ε0, and the maximum velocity used in spe-

cial relativity crel are equal. The propagation of a photon
being a statistical process, we predict fluctuations of its
time of flight of the order of 0.05 fs/

√
m. This could be

within the grasp of modern experimental techniques and
we plan to assemble such an experiment.
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