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3 Departamento de Óptica, Facultad de F́ısica, Universidad Complutense, 28040 Madrid, Spain

Received 17 September 2012 / Received in final form 15 January 2013
Published online (Inserted Later) – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2013

Abstract. There may be a link between the quantum properties of the vacuum and the parameters de-
scribing the properties of light propagation, culminating in a sum over all types of elementary particles
existing in Nature weighted only by their squared charges and independent of their masses. The estimate
for that sum is of the order of 100.

1 Introduction

The speed of light in vacuum and the impedance of the
vacuum for electromagnetic radiation are experimentally
determined parameters, the value of which has not been
deduced so far. The same holds for the fine structure con-
stant. Here, we use a simple model, borrowed from the
description of dispersion in solid state physics, to attempt
to establish a link between classical optics, i.e. Maxwell’s
equations, and the quantum properties of the vacuum.

Maxwell’s displacement, D = ε0E + P, contains a
quantity called the electric polarization of the vacuum. In
the SI system, this quantity is ε0. P describes the polar-
ization of the medium, in case we are not dealing with just
the vacuum. Normally, ε0 is taken as a parameter given
by Nature. In the past, its value has occasionally been
adjusted with the availability of more precise measure-
ment. Likewise, 1/μ0 is the magnetization of the vacuum1,
H = B/μ0−M. Here we expand on our earlier analysis [1]
to underline its relevance for particle physics. A related
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1 Initially, quantities such as the speed of light and the

impedance of the vacuum where experimentally determined
parameters. Then, in the SI system in 1948 the value for μ0

was defined. Later, in 1983 the speed of light was given a de-
fined value. As a result, ε0 and the vacuum impedance also
had defined values. These definitions were made jointly by the
institutions in charge of standards world wide. The values were
defined to be compatible with the earlier experimental values
within the error bars. Currently, new SI definitions are being
discussed by the same institutions with the goal to improve the
standards e.g. of the kilogram. As a side effect, μ0 and ε0 will
be experimentally determined numbers again. For the purpose
of this paper we, therefore, consider the above constants of
classical electromagnetism to be experimental numbers, which
may tell us something about Nature.

proposal linking the quantum vacuum to light propaga-
tion was obtained independently by Urban et al. [2].

In the early days of quantum mechanics, Weisskopf
made the statement that the positron theory works well
provided one ignores any electric and magnetic polariz-
ability of the vacuum it may imply [3]. Looking back, we
would reinterpret this statement as meaning that the po-
larizability of the virtual electron-positron pairs in the vac-
uum must, of course, be already contained in Maxwell’s
equations – otherwise they would not work so well – and
it would be wrong to account for the same effect a second
time. However, this implies the properties of the quantum
vacuum govern the propagation of light and thus govern
all of classical optics. Heitler [4] likewise mentions that ε0

may be thought of as the polarizability of the vacuum as-
sociated with the electric dipoles induced in the virtual
electron-positron pairs by an external electric field. We
now take this literally and relate the parameters appear-
ing in Maxwell’s equations, ε0 and 1/μ0, to the quantum
properties of the vacuum. Incidentally, the term Maxwell
added to form the Lorentz invariant set of equations, he
interpreted as the displacement current of the vacuum. In
our approach, this interpretation comes to life, resulting in
a Lorentz invariant contribution of the quantum vacuum
to the propagation of light.

2 The model

The speed of light plays a multiplicity of roles in consider-
ations describing different physical quantities: (1) crel, the
relativistic relation between the mass of a particle and its
rest energy and the limiting speed in the Lorentz trans-
formation; and (2) clight, the phase velocity of electromag-
netic radiation in vacuum. For the argument below, we
first keep crel and clight as separate and not necessarily
identical quantities. This obviously means that, for the
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moment, we relax the requirement for Lorentz invariance
of Maxwell’s equations. We derive the speed of light and
the impedance of the vacuum on the basis of the proper-
ties of the quantum vacuum treating it as a dielectric and
diamagnetic medium and then compare these values to
the experimentally observed ones, thus restoring Lorentz
invariance. We will see that the impedance depends on the
sum over the squared charges of the different types of ele-
mentary particles, while the speed of light is independent
of this sum. The latter underlines the general nature of
the speed of light. According to present day knowledge,
the sum reads

e. p.∑
j

q2
j

e2
= 1 + 1 + 1 + 3

(
3
1
9

+ 3
4
9

)
+ 1 + . . .? (1)

The sum has to account for all types of elementary
particle-antiparticle pairs, known and unknown. The
known ones sum up to 9, accounting for electron, muon,
tauon, six different quarks each coming in three colour
charges, as well as the charged W -boson.

The model of the vacuum with dielectric and diamag-
netic properties described below is clearly oversimplified
and a more rigorous model is needed. But it will help us
getting a first insight into the relation between the quan-
tum vacuum and optics.

2.1 The polarization of the vacuum

The vacuum is assumed to consist of virtual particle-
antiparticle pairs treated as extremely short-lived polariz-
able objects. The polarization is a dipole moment density;
therefore, one has to calculate the dipole moment induced
by an external electric field and divide by the volume oc-
cupied by the pair. We have two ways of calculating the
induced dipole moment.

The first possibility is to suppose there is a spring hold-
ing a virtual pair together. The spring constant should be
related to the energy needed to excite the virtual pair to
a real pair �ω0 = 2mc2

rel. Since optical frequencies are
a million times smaller than the frequency associated to
the electron-positron energy gap, we are essentially deal-
ing with the static limit of the driven harmonic oscillator.
Note that two equal harmonically bound masses m corre-
spond to a harmonic oscillator with only one mass given
by the reduced mass mred = m/2. The corresponding in-
duced electric dipole moment is

d = ex =
e2

mredω2
0

ζE =
2e2

mω2
0

ζE =
e2

�
2ζ

2m3c4
rel

E. (2)

The factor ζ accounts for transient creation of the electric
dipole; i.e. for averaging over the initial transient dynam-
ics leading to an electric dipole moment smaller than the
static limit.

The volume occupied by a single virtual pair can be
estimated using the uncertainty relation and should thus
be of the order of the cube of the Compton wavelength of

the electron:

V = η

(
�

mcrel

)3

. (3)

We allow for some flexibility by introducing an additional
factor η, which we expect to be of order unity. The polar-
ization of the electron-positron vacuum is thus

P0 =
d

V
=

e2ζ

2crel�η
E. (4)

Since the mass drops out, different types of elemen-
tary particles having the same electric charge contribute
equally to the vacuum polarizability irrespective of their
mass. Hence, to obtain the full vacuum response we have
to sum over all types of elementary articles, known and
unknown:

P0 =
ζ

2crel�η

⎛
⎝e. p.∑

j

q2
j

⎞
⎠ E ≡ ε0E. (5)

As mentioned before, the static limit may be too large
an estimate for the induced dipole moment, because the
charges have to be accelerated to this value. The factor ζ
was introduced to account for this dynamical polarization
process. Starting from zero and averaging over the tran-
siently appearing dipole moment for a time given by the
uncertainty relation for the particle-antiparticle pairs, one
obtains ζ = 0.15. Furthermore, we take the scale factor η
the same for all particles.

Within this model one may wonder about a possible
frequency dependence of the vacuum polarization as a re-
sult of the resonances at the rest mass energies. However,
in a real excitation the conservation of momentum should
be fulfilled, prohibiting the excitation of a virtual pair
to a real pair in free space with a plane wave. Far away
from resonance, the process is allowed because of the quan-
tum uncertainty of the momentum. Far above resonance,
we would expect the induced dipole moment to decrease
as 1/ω2

0,j. In contradistinction, a converging dipole wave
may excite real pairs in the vacuum [5].

The second alternative of calculating the induced
dipole moment is to take the particle and the antipar-
ticle to be free. Accordingly, the two particles would be
accelerated in the external electric field in opposite di-
rections, but only for the ultra short time during which
we can consider the virtual pairs to exist, which is given
by the relation ΔE Δt ≥ �. The time interval is thus
Δt � �/2mjc

2
rel. This leads to the same expression as in

equation (5). Integrating over time in this free-particle
model yields ζ = 0.17, slightly larger than the value ob-
tained in the harmonic oscillator model above.

2.2 The magnetization of the vacuum

Next, we need to develop the same procedure for the
magnetic response. The induced magnetic dipole moment
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dmagn is given by the current induced in a loop multiplied
by the loop area:

dmagn = 2iA = 2(qjν)(π	2). (6)

The factor 2 comes about because the oppositely charged
particle and antiparticle both contribute equal amounts.
The frequency at which the charge goes around the loop
is the cyclotron frequency:

dmagn =
q2
j

mj
	2

jB. (7)

The average radius of the current loop 	j is of the order of
the Compton wavelength, with a scale factor ξ also taken
to be independent of the particle type:

	2
j = ξ

(
�

mjcrel

)2

. (8)

Dividing by the volume of the virtual pair (Eq. (3)) we
obtain the vacuum magnetization

M0 =
ξcrel

η�

⎛
⎝e. p.∑

j

q2
j

⎞
⎠ B ≡ 1

μ0
B. (9)

Again the mass drops out and we sum over all types of
elementary particles. We assume the vacuum to be dia-
magnetic: the particle-antiparticle pairs will be in singlet
states and there will be no contribution of the total spin
of each pair to the magnetization of the vacuum2.

2.3 The speed of light and the impedance
of the vacuum

Now, the stage is set to relate the speed of light clight and
the impedance of the vacuum Z0 to the properties of the
quantum vacuum. In Maxwell’s theory clight = 1/

√
ε0μ0

and we can insert the model values for ε0 and μ0 using
equations (5) and (9):

clight = crel

√
2ξ

ζ
. (10)

Likewise, we find

Z0 =
√

2η�√
ξζ

⎛
⎝e. p.∑

j

q2
j

⎞
⎠

−1

= 5811[Ω]
η√
ξζ

⎛
⎝e. p.∑

j

q2
j

e2

⎞
⎠

−1

.

(11)
Several things deserve mentioning. First of all, if we set
the scale factors to one and the sum over the normalized

2 If, however, we associate a magnetic moment with each
particle separately then the antiparallel spins will lead to par-
allel yet isotropic magnetic moments. In a way, we are making
assumptions about the angular momentum coupling scheme
when neglecting any paramagnetic contribution.

charges to nine, we get a speed of light and an impedance
which are both off by only a factor of two. We consider this
to be remarkably close and supporting the general applica-
bility of the model. Secondly, the speed of light comes out
to be independent of how many types of elementary par-
ticles contribute to the polarization and magnetization of
the vacuum. This seems to underline the global character-
istics of clight

3. We next use the experimental observation
that clight = crel; this yields

ζ

ξ
= 2. (12)

Incidentally, this result can also be derived through requir-
ing that the polarization and magnetization be the same
in all frames. Thus, the expression for the impedance sim-
plifies to

Z0 =
2η�

ζ

⎛
⎝e. p.∑

j

q2
j

⎞
⎠

−1

= 8218[Ω]
η

ζ

⎛
⎝e. p.∑

j

q2
j

e2

⎞
⎠

−1

. (13)

2.4 The fine structure constant

The fine structure constant α relates to the strength of the
coupling between the electromagnetic field and matter and
is given by

α =
e2

4πε0�c
. (14)

This is the zero-energy value. There is experimental ev-
idence for an increase of α toward higher energies [6],
referred to as the running fine structure constant. This
is usually ascribed to the renormalization of the electric
charge.

In quantum electrodynamics, one could modify ε0 in-
stead of renormalizing the electric charge. Our model sug-
gests doing exactly this by relating ε0 to the sum over the
different types of elementary particles

ε0 =
ζ

2crel�η

⎛
⎝e. p.∑

j

q2
j

⎞
⎠, (15)

which results in the following expression for the zero-
energy value of the fine structure constant:

α0 =
η

2πζ

⎛
⎝e. p.∑

j

q2
j

e2

⎞
⎠

−1

. (16)

The model prediction for αE at higher energies is obtained
by omitting those particle-antiparticle pairs having a rest
mass energy lower than E . This allows for an alternative
route to estimate the sum in equation (1).

3 It may be worth noting that there seems to be an inter-
esting analogy with a completely different quantity, namely
the speed of sound in a gas, being largely independent of the
density.
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2.5 Dispersion

One consequence of this model is that as soon as the light
frequency increases beyond the gap frequency for one par-
ticular particle-antiparticle pair, the contribution of this
pair to the sum will decrease4, both for ε0 and 1/μ0.
Within this model the sum cancels out when calculat-
ing the speed of light, predicting a frequency independent
speed of light equal to crel. The vacuum impedance how-
ever will be affected starting at gamma ray frequencies
above 1 MeV. It would certainly be interesting to investi-
gate this prediction5.

3 Discussion

There are two independent comparisons between the
model and experimental values both leading to a predic-
tion for the sum over all charged particles, known and
unknown ones.

3.1 The number of charged elementary particles
as derived from the impedance of the vacuum

We can now set the model result in equation (13) for
the vacuum impedance equal to the empirical value
Z0 = 376.7 Ω. The remarkable result is that this pro-
vides information about future additional types of charged
particle-antiparticle pairs:

e. p.∑
j

q2
j

e2
=

2η�

e2Z0ζ
= 21.82

η

ζ
. (17)

There are still two unknowns: the sum and η. Without
any further information we use the initial assumption in
Section 2.1 that η � 1 ± δη:

e. p.∑
j

q2
j

e2
� 109 (1 ± δη) . (18)

Here, δη accounts for the uncertainty in the value of η.
4 When the frequency of the electromagnetic wave ω in-

creases beyond the rest mass energy of one type of particle-
antiparticle pair, then the contribution of this type of particles
to the sum in equation (1) drops to zero at a rate propor-
tional to the inverse of the frequency squared for the electric
polarizability and at a rate proportional to the inverse of the
frequency for the magnetic polarizability. The electric dipole
moment is induced with some delay owing to the inertia of the
particle mass, while the magnetic dipole moment is induced
instantaneously for a point charge. Thus, one would not ex-
pect any frequency dependence of the magnetic polarizability
of point charges. However, the position uncertainty of the or-
der of the Compton wavelength leads to a reduced current at
frequencies higher than the resonance and thus to the inverse
frequency dependence.

5 If the statement about the different frequency dependences
in the electric and in the magnetic case in footnote 4 is correct,
there might be deviations to the speed of light in the vicinity
of the rest mass energies.

3.2 The number of charged elementary particles
as derived from the energy dependence of the fine
structure constant

A second independent estimate for the sum over all par-
ticles involves the fine structure constant and its estab-
lished variation with energy. The fine structure constant
is 1/137.04 at low energies and reduces to 1/(128.5± 2.5)
at 58 GeV. At this energy we are beyond the rest mass
energies of most of the well-known particle-antiparticle
pairs (except for the top quarks and the W -bosons). So,
omitting the particle types with mjc

2 < 58 GeV the sum
would reduce by 20/3 = 6.67, increasing α correspond-
ingly. Based on our model, and with the experimental val-
ues for α0 and α58 GeV, we find a second independent way
to determine the sum:

α−1
0 = 137.04 = const.

e. p.∑
j

q2
j

e2
,

(19)

α−1
58 GeV = 128.5 ± 2.5 = const.

e. p.>58 GeV∑
j

q2
j

e2
.

In the calculation, we can take into account that the con-
tribution of one particle type does not fall off abruptly
but proportional to 1/ω, so each term in the sum is re-
placed with

q2
j

e2
�→ q2

j

e2
×

⎧⎪⎪⎨
⎪⎪⎩

1 �ω ≤ mjc
2

(
mjc

2

�ω

)2

�ω > mjc
2.

(20)

This results in a reduction of the sum for 58 GeV by 6.5
instead of 6.67. Consequently,

α−1
0

α−1
58 GeV

=
∑

all∑
>58GeV

=
∑

all∑
all −6.5

=
137.04

128.05± 2.5
, (21)

so finally ∑
all

= 104
{

+43
−24.

(22)

3.3 Comparison

The two different results obtained so far agree quite well.
It seems that the approach in Section 3.2 is less ambiguous
than the one in Section 3.1. One could use equation (21)
to reduce this ambiguity in Section 3.1. Using ζ = 0.2
and imposing the result in (21) would lead to η = 1.05 ±
0.31. This number is very close to the one assumed in
Section 3.1. Consequently, when using ζ = 0.2, ξ = 0.1
and η = 1.05, the two approaches are both compatible,
the sum being of the order of 100. This would predict
many still undiscovered charged elementary particles with
rest mass energies above 58 GeV.
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4 Conclusions

Our model is a most simple one and the quantitative re-
sults, namely the sum over the different types of elemen-
tary particles, have thus to be taken with caution. One fea-
ture of this model is that it relates the number of charged
elementary particles to low-energy properties of the elec-
tromagnetic field, such as the vacuum impedance and the
fine structure constant. The zero energy value of the fine
structure constant, or equivalently the vacuum permittiv-
ity, has so far been a purely experimental number. As to
the speed of light, the value predicted by the model is
determined by the relative properties of the electric and
magnetic interaction of light with the quantum vacuum
and is independent of the number of elementary particles,
a remarkable property underlining the general character
of the speed of light.

Thus, the purpose of the simple model is to point at the
intimate relationship between the properties of the quan-
tum vacuum and the constants in Maxwell’s equations.
Indeed, from this picture, the vacuum can be understood
as an effective medium [7]. Furthermore, we have devised
two independent ways of checking the model predictions
against the experimental values. We hope that this re-
sult will stimulate more rigorous quantum field theoretical
calculations.
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