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Abstract. Development of forms in living organisms is complex and fascinating. Morphogenetic theories
that investigate these shapes range from discrete to continuous models, from the variational elasticity
to time-dependent fluid approach. Here a mixture model is chosen to describe the mass transport in a
morphogenetic gradient: it gives a mathematical description of a mixture involving several constituents in
mechanical interactions. This model, which is highly flexible can incorporate many biological processes but
also complex interactions between cells as well as between cells and their environment. We use this model
to derive a free-boundary problem easier to handle analytically. We solve it in the simplest geometry:
an infinite linear front advancing with a constant velocity. In all the cases investigated here as the 3D
diffusion, the increase of mitotic activity at the border, nonlinear laws for the uptake of morphogens or
for the mobility coefficient, a planar front exists above a critical threshold for the mobility coefficient but
it becomes unstable just above the threshold at long wavelengths due to the existence of a Goldstone
mode. This explains why sparsely bacteria exhibit dendritic patterns experimentally in opposition to other
colonies such as biofilms and epithelia which are more compact. In the most unstable situation, where
all the laws: diffusion, chemotaxis driving and chemoattractant uptake are linear, we show also that the
system can recover a dynamic stability. A second threshold for the mobility exists which has a lower value
as the ratio between diffusion coefficients decreases. Within the framework of this model where the biomass
is treated mainly as a viscous and diffusive fluid, we show that the multiplicity of independent parameters
in real biologic experimental set-up may explain varieties of observed patterns.

1 Introduction

Chemotaxis plays an important role in many biological
processes like wound healing, cancer metastasis and fertil-
ization. In colonies or tissues, chemotaxis leads to collec-
tive motions regulated by biological processes like cell-cell
interactions, adhesion to the substrate, secretion of growth
factor or inhibitors. At the origin of this process mor-
phogens are long-range molecules that induce concentra-
tion cellular responses, activating different transcriptional
pathways [1]. In embryogenesis, diffusion of these species is
at the origin of the “French flag model” where cell fates are
simply explained by their concentration gradients. Here,
we aim to investigate the role of these chemoattractants
in two-dimensional migration of bacteria or cells in an ep-
ithelium. Our scope is to give a unified picture of these two
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different experimental in vitro situations and to present a
continuous formalism of the shape of the colony during
migration.

Morphogens diffuse while up-taken at the surface of the
cells by complex chemo-receptors [2]. Chemotatic path-
ways for bacteria allow motile bacteria to navigate accord-
ing to higher concentration of attractants. Colonies exhibit
various patterns going from rather compact and cohesive
to dendritic (even fractal in extreme cases) structures. In
a pioneering review [3] Ben Jacob and collaborators have
underlined the close similarity between bacteria colonies
(in a Hele-Shaw cell) and patterns in physics experiments
like dendritic crystallization [4–6], viscous fingering [7,8]
and electro-chemical deposition [9,10]. However, the bac-
terial pattern differs depending on the species, the nutrient
conditions and also the substrate, exhibiting diverse mor-
phologies including Eden-like growth, fractal and dense
branching morphologies (see the review by Ben-Jacob and
Levine [11]). Epithelia are more compact, cells spread as
a thin layer over a flat surface in a Petri dish. Fronts are
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denser compared to bacteria [12] even if some fingering
instabilities may also appear.

All these patterns are reminiscent of diffusive instabil-
ities but the relation between solidification or viscous fin-
gering experiments is not obvious a priori. Here we present
a continuous model of chemotaxis migration in the frame-
work of the mixture models [13,14] with two phase con-
stituents. In principle, this model can incorporate an arbi-
trary number of constituents described by a density and a
velocity field defined on an intermediate scale between the
consituent and the experimental set-up size. In this work,
one phase is water while the other phase is a mixing of
water and cells: bacteria or epithelium cells. We assume
the horizontal size of the Petri dish or the Hele-Shaw cell
infinite as the domain of the colony and we examine the
evolution of this colony under a chemotactic gradient. We
limit ourselves to the case of chemoattractants (the cells
swim up gradients of morphogens), not the case of chemo-
repellants [15]. The mixture model is suitable for numeri-
cal investigations but here we use it to transform the front
dynamics into a free-boundary problem. The boundary of
the colony evolves according to a diffusion equation with
an uptake term while at the unknown border boundary
conditions are applied. Indeed when the transition zone is
sharp enough, it appears as a zone of discontinuities be-
tween two domains. Boundary conditions depend on the
biological processes involved in the model such as an in-
crease of mitosis at the front as observed in recent exper-
iments [16].

The derived sharp interface model is then a free-
boundary problem as in dendritic growth or viscous finger-
ing formulation. It has the advantage to be simple enough
to allow analytical treatments for the existence and sta-
bility of fronts. It can appear as a new variant of the
Keller-Segel [17] model of chemotaxis, originally written
to explain aggregation of amoebae and which has been
widely studied in mathematical biology. It is known to
generate finite time singularities showing its intrinsic in-
stability [18–20]. Once transformed into a free-boundary
problem, our model indicates that planar fronts remain
unstable for chemoattractants due to the existence of a
Goldstone mode and a behavior in k2 for the growth rate
of weak perturbations at long wavelengths. This is mainly
true for weak chemotaxis and hence, weak velocities. Al-
though capillary effects stabilize the front at short wave-
lengths, it is not enough to circumvent the intrinsic insta-
bility of the Keller-Segel [17] model. However when chemo-
taxis increases above a critical threshold for the mobility
coefficient, surprisingly the front recovers the stability. We
examine also other physical effects present in practice in
experiments like the diffusion in 3 dimensions or nonlin-
earities which have been extensively introduced in math-
ematical biology.

Nonlinearities occurring in the chemoattractant diffu-
sion itself, the uptake or the mobility law introduce com-
plexity in the analytical predictions and we consider only
the last two cases. For the uptake process of the chemoat-
tractants by the cells, the Michaelis Menten [21] law is very
commonly used in bacteria simulations [22]. This nonlin-
earity does not suppress the Goldstone mode but may

Fig. 1. Schematic representation of a top view of the Hele-
Shaw cell containing the colony in the domain Ω. The interface
δΩ is wavy and is assumed to have a small extension compared
to the Hele-Shaw cell size.

change the behavior at long wavelengths. Surprisingly a
much more stabilizing effect is induced by a nonlinearity
in the chemotactic mobility as a function of the chemoat-
tractant concentration. In this case we demonstrate that
planar traveling-wave stable solutions exist. The mixture
model can be extended to incorporate short-range or elas-
tic interactions like it has been done for tumor growth
with adhesion to a soft substrate [23]. Our work will open
new possibilities for growth of epithelia once introduced
more solid interactions in the growth process. It might be
a way to explain the relative stability of epithelium growth
in vitro [24,25].

The paper is organized as follows: Section 2 presents
the continuous model for chemotaxis, including diffusion,
interaction between cells, the morphogen uptake and mi-
tosis. Section 3 gives the asymptotic analysis allowing the
transformation of coupled partial differential equations
into a free-boundary problem which is easier for analy-
sis. Section 4 gives the results of the model: the existence
of traveling wave solutions, the stability of these solutions
according to a restricted number of dimensionless param-
eters. The end of sect. 4 concentrates on the possibility of
suppressing the Goldstone mode by introducing various
realistic effects like mitosis at the border and nonlineari-
ties. Section 5 compares the results to experiments. Finally
in conclusion we sum up the main theoretical results.

2 The continuous model for chemotaxis

We consider a two-dimensional cell population of density
ρs immersed in a morphogenetic gradient. This popula-
tion can be bacteria in a Hele-Shaw cell, bacteria in a
thin film put on a solid substrate or an epithelium grow-
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Fig. 2. Schematic representation of a Petri dish containing
a growing epithelium in the domain Ω. The interface δΩ is
wavy and is assumed to have a small extension. A flux with a
decreasing intensity from left to right is indicated to show the
diffusion in the vertical direction.

ing on a substrate. Initially located in a domain Ω, with a
front separation δΩ (see figs. 1 and 2), the colony moves
in the direction of the highest chemoattractant concentra-
tion. When they are also nutrients, the colony also grows
by cell division. Both processes are considered but we will
focus mostly on migration.

2.1 Description of the cellular population

We adopt here a continuous model for the cells immersed
in a liquid bath (see figs. 1 and 2). For growing epithe-
lia on a substrate, like in wound healing mimetic experi-
ments [25], the fact that the tissue remains a monolayer
ensures the 2D characteristic of the migration even if the
experiment takes place in a 3D Petri dish. For bacteria,
on the contrary, the 2D hallmark is obtained by confine-
ment in a Hele-Shaw cell or when bacteria grow mak-
ing a thin film. We will not consider this last possibility
here although adaptation of our model can be done for
biofilms. In both cases (epithelia or bacteria), the colony
is assumed to live in a flat land saturated by nutrients.
We assume that the cellular population is located in an
infinite domain Ω represented by y < 0 in Cartesian coor-
dinates. Our sample being a mixture of two species with
the same mass density, the density of water, we call ρl

and ρs the concentration in each phase with ρl + ρs = 1.
Far away from δΩ, for y positive ρl = 1 and ρs = 0.
For y → −∞ ρl and ρs reach constant values: ρs = ρ∞
and ρl = 1 − ρ∞. For epithelia only, when the tissue is
at confluence, ρs = ρ∞ = 1 and the layer thickness h0

is then constant. At the front it decreases and this vari-
ation [16] can be taken into account in our model by an
increase of ρl. Each phase has locally a velocity (vl or
vs) and the average velocity is then given by V = ρlvl +
ρsvs. We consider now the diffusion of the nutrients with
concentration c̃.

2.2 Morphogen diffusion in a Hele-Shaw cell and
definition of the physical units

We begin by the bacteria (Hele-Shaw cell). The nutri-
ents may play different roles and we will try to involve
all of them in the same formalism. Being chemoattrac-
tants, they are the motor of the migration but they will
be absorbed by the cells for proliferation or simply be-
cause of surface adhesion. Choosing the uptake time τc

as time unit and calling Dl the morphogen diffusion co-
efficient in the liquid phase, we define a length scale by
l0 such that l20 = Dlτc/ρ∞ and a velocity unit given by
l0/τc =

√
Dl/(ρ∞τc). The validity of the model requires l0

to be much bigger than the cell size. All the equations pre-
sented hereafter are dimensionless. The chemoattractant
concentration c = c̃/c∞ satisfies a 2D diffusion equation
given by

∂tc + V · ∇c = ∇D(ρs)∇c − cρs, (1)

∇ being the horizontal dimensionless gradient ∇ =
(∂x, ∂y) and D(ρs) = (β−1)(ρs/ρ∞)+1. Clearly the mor-
phogens are consumed only if members of the colony exist,
i.e. for nonvanishing ρs. c and ρs are space and time de-
pendent. Let us examine now the epithelium migration in
a Petri dish according to figs. 2 and 3.

2.3 Morphogen diffusion in a Petri dish

The same equation in 3D for nutrient diffusion in a Petri
dish with a localized absorption at z = 0 shows an additive
term and we get

∂tc3d + V ·∇c3d = ∇2D(ρs)∇2c3d +
∂2c3d

∂z2
− c3dρs, (2)

with c3d = c3d(x, y, z, t) being now a function of all coordi-
nates while ρs remains a function of the horizontal position
only. In this case the saturation condition c̃3d = c∞ = 1
has to be applied for z = H, the position of the upper
bath surface and we assume that H is a large quantity
(much larger than our length unit and the thickness of
the epithelium h0). This hypothesis is checked in the ex-
periment [25]. In this context, considering a distance d
intermediate h < d < H, one can expand the density c as

c3d(x, y, z, t) = c0(x, y, t) + ε21c1(x, y, Z) + O(ε41), (3)

with ε1 = d/H and Z = z/ε1. To leading order, we get

∂tc0 + V ∇c0 = ∇D(ρs)∇c0 +
∂2c1

∂Z2
− c0ρs + O(ε21). (4)

Above the distance d we assume that the saturation is
provided by a continuous vertical flux, a valid assump-
tion if H is much smaller than the lateral size of the Petri
dish. This flux being amplified when the absorption pro-
cess increases, we have ∂zc3d = α(1− c0)d. Averaging the
concentration gives

c(x, y, t) = 〈c3d〉 =
1
d

∫ d

0

c3d(x, y, z, t)dz, (5)
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then in the layer d eq. (4) is transformed into

∂tc + V ∇c = ∇
(
βρs + 1 − ρs

)
∇c

−c(ρs + α)/(1 + α) + α/(1 + α), (6)

where a correction of the length unit has been intro-
duced to take into account the transverse flux in 3D:
(l̃0 = l0/

√
(1 + α)). The average concentration satisfies

a 2D diffusion equation with an additive contribution due
to the transverse flux. The depletion of the nutrients has
to be decomposed into two contributions: one occurring at
the border due to possible mitosis activity (not yet intro-
duced in eq. (6)), the second present in eq. (6) acting on
the scale of the colony. Both effects may have also differ-
ent amplitudes. A more detailed description will be given
hereafter. To solve one of these diffusion equations (1), (6)
one needs to know the colony density ρs and the velocity
V . This is the aim of the next section.

2.4 Cellular density repartition and dynamics

We present here the mixture model mainly used in the con-
text of tumor growth which constitutes a rather intuitive
formalism when dynamics, growth, interactions between
species and dissipation occur. We describe this model in
the following and applied it to chemotaxis migration. This
model [13,14] concerns a mixture of species in interaction
which move according to mechanical laws. Being continu-
ous it is valid for processes occurring at a scale larger than
the size of the cells. For our purpose we limit ourselves to
a two-phase model, mainly the cells and water, but the
model can be extended easily to an arbitrary number of
species. The species are then described by an average den-
sity ρi and average velocity vi, the average being made at
an intermediate scale between the cellular and the exper-
imental sizes. These quantities are then space and time
dependent. When the mixture contains much smaller ele-
ments like morphogens or nutrients, they are not consid-
ered as part of the mixture. However, they will modify ei-
ther the dynamics or the species repartition. We represent
chemotaxis by a simple linear relation between the cell ve-
locity and the gradient relative to the concentration at the
origin of a forcing velocity: ṽs = −Λ̃∇c̃ in physical units,
being simplified in vs = −Λ∇c in dimensionless units
with Λ = Λ̃c∞ρ∞/Dl. More complex choices with non-
linearities can be found in the abundant literature on the
subject [18,19] and will be discussed in sect. 4. The mass
balance equation written in dimensionless units reads

∂tρs + ∇ · ρs(vs − Λ∇c) = γ, (7)

γ being the cell proliferation rate. For the liquid phase an
equivalent equation with ρl = 1 − ρs reads

∂tρl + ∇ · ρlvl = γl = −γ. (8)

Since the mass density of cells and water is very similar,
we have γl = −γ. The average velocity is given by

V = ρsvs + ρlvl, (9)

with the incompressibility condition transformed into

∇ · (V − ρsΛ∇c) = 0. (10)

We assume a free energy Fs for representing the attraction
between cells

Fs =
∫

R2
dxdy

(
Ψ(ρs) + ε2|∇ρs|2

)
, (11)

where a penalty energy has been added for sharp density
gradients. Dissipation in this system is due to the friction
with the substrate or friction between phases. Assuming
a viscous drag between phases, the variation of energy
per unit times called Q is then

Q =
∫

R2

[
Mρsρl

2
(vs − vl)

2 +
Msρ

2
s

2
v2

s +
Mlρ

2
l

2
v2

l
︸ ︷︷ ︸

dissipation

+
(

∂Ψ

∂ρs
− ε2Δρs

)
(−∇ · (ρs(vs − Λ∇c) + γ)

︸ ︷︷ ︸
variation of free energy

− p∇ · (ρsvs + ρlvl − ρsΛ∇c)
︸ ︷︷ ︸

incompressibility

]
dxdy. (12)

The pressure p ensures the incompressibility of the mix-
ture, the coefficient M refers to the friction between both
phases, Ml and Ms represent either the fluid friction with
a stiff static substrate or the internal viscous dissipation.
Q has been called Rayleighian in [26] and appears as the
equivalent of the Lagrangian for dissipative systems. As a
consequence, our formalism is purely mechanical and does
not introduce any thermodynamic concept as phase-field
models for example [27,28]. The first term of eq. (12)
exists only if both phases exist at an arbitrary point which
explains the factor ρl and ρs, the same argument being ap-
plied to the second and third term of eq. (12). This energy
rate Q must be an extremum which gives by elementary
variation analysis with respect to both velocities (vs,vl)

vs = −A · ∇p − B · ∇
(

∂Ψ

∂ρs
− ε2Δρs

)
, (13)

V = ρsvs +ρlvl = −C ·∇p−D·∇
(

∂Ψ

∂ρs
− ε2Δρs

)
, (14)

with

A =
(M + Mlρl)

M , B =
(Mρs + Mlρl)

M ,

with

C =
M + (Ml + Ms)ρlρs

M , D =
(M + Mlρl)ρs

M ,

and
M = MMsρ

2
s + MsMlρlρs + MMlρ

2
l . (15)

Introducing the incompressibility condition eq. (10) into
eq. (14) allows to calculate the pressure p as usually done
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Fig. 3. A sequence of a growing epithelium stripe of MDCK
cells according to the technique of stencil assay [25]. The bar
means 200 μm, the duration time is 8 hours. Courtesy of Pascal
Silberzan.

in hydrodynamics. Once p is introduced into eq. (13) we
deduce vs as a function of ρs and finally eq. (7) gives the
density ρs for a given interaction potential Ψ(ρs) and the
growth rate γ.

At this stage, the presentation of the model is com-
plete and ready for numerical simulations. It is an alter-
native to phase-field models [27,28]. Another possibility is
to derive the asymptotic sharp interface limit and trans-
form this set of coupled partial differential equations into
a free-boundary problem. Free-boundary problems allow
to predict analytically the front morphology in simple ini-
tial geometries: planar and circular fronts, while continu-
ous models are more easy to implement in numerical front
simulations.

3 Morphogenesis free-boundary problem

We consider now the asymptotic limit of our system of
eqs. (1), (6), (14) far away from the interface. It corre-
sponds also to the equations we have to solve in the sharp
interface limit.

3.1 Bulk equation

In Ω, the cell density ρs has reached its constant value ρ∞.
Cell divisions if they occur are localized at the interface
border, and hence γ vanishes far away from this border
and constant values are reached for ρl and ρs. Taking V
from eq. (14) gives

V = −C∞∇p, (16)

where C∞ is the asymptotic limit of C with ρs = ρ∞ and
ρl = 1−ρ∞. Note that for epithelia, C∞ is equal to 1/Ms.
Hereafter we will use capital quantities for the asymp-
totic values or for the sharp interface model. Equation (16)
means simply a Darcy flow both for a dilute bacteria bath
but also for tissues when the hydrostatic part dominates
the shear stresses. Far away from the front but in water
now, ρs = 0 and ρl = 1. We have also a Darcy law with a
constant permeability Ml. Defining P = C∞ · p the hydro-
dynamic flow equation in Ω becomes

V s = −∇P, with ∇2(P + Λc) = 0, (17)

while in water it is

V l = − 1
(C∞Ml)

∇P, with ∇2P = 0. (18)

When the ratio of permeability C∞Ml is weak we can ne-
glect the flow in the liquid and have P = 0. For the concen-
tration field, we need simply to consider eq. (1) or eq. (6)
with ρs = 0 in the liquid and ρs = ρ∞ in the colony. We
examine now the boundary conditions.

3.2 Boundary conditions

The correct boundary conditions to apply in the sharp in-
terface limit come from the inner domain around ∂Ω when
ε → 0. The asymptotic analysis is not difficult but a lit-
tle technical. We give here the outline of the proof. First,
as for phase-field models [27,28], we define a dimension-
less order parameter φ which will vary between −1 and 1
across the tiny boundary layer, the interface itself being
defined by φ = 0. So we get

ρs = (1 − φ)ρ∞/2 (19)

and ρl = 1−ρs = (1+φ)ρ∞/2. We define a local coordinate
system on the line δΩ (see fig. 1), the unit vectors being
the tangent and normal to this line. We solve eqs. (6), (14)
in this frame of coordinates assuming the following scaling
for φ, p and c as a function of R = r/ε and S

φ(R,S) = φ0(R,S) + εφ1(R,S) + O(ε2),

p(R,S) = εp0(R,S) + O(ε2),

c(R,S) = C0(r, S) + εc0(R,S) + O(ε2). (20)

Here we make the assumption that the concentration field
c(R,S) is continuous at leading order and may present a
sharp variation only at first order.
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3.2.1 Pressure jump at the interface

A sharp transition zone is obtained for typical energy in-
teractions with two wells such as in the Cahn-Hilliard
model [29,30]: Ψ = f0(−φ2/2 + φ4/4). This choice has
the advantage to give analytical results [31]. Combining
eq. (10) with eq. (14), taking into account the scaling de-
fined by eqs. (20), the leading contribution is then:

L(φ0) =
∂2φ0

∂R2
+a−2φ0(1−φ2

0) = 0 with a2 =
ρ2
∞

4f0
, (21)

which gives

φ0(R) = tanh
(

R

a

)
. (22)

The next order gives

2Λ0ρs

Dρ∞

∂c0

∂R
+

2C
Dρ∞

∂p0

∂R
− κ

∂2φ0

∂2R
− ∂

∂R
L1(φ1) = 0, (23)

with κ the local curvature, positive for the convex part of
the interface and L1(φ1) denotes

L1(φ1) =
∂2φ1

∂R2
+ a−2(1 − 3φ2

0)φ1. (24)

Equation (23) is an equation for φ1 once p0 and c0 are
known. However one needs to ensure convergence of the
expansion given by eq. (20), so one needs that φ1 and
all its derivatives cancel at both ±∞. Since ∂φ0/∂R is a
solution of L1 = 0, the theorem of the adjoint imposes

2
ρ∞

∫ ∞

−∞

(
Λ0ρs

D
∂c0

∂R
+

C
D

∂p0

∂R

)
(1 − φ0)dR =

κ

∫ ∞

−∞

(
∂φ0

∂R

)2

dR. (25)

Noticing that the integrand of the left-hand side is well
behaved at both infinities, we integrate by part to extract
the main contribution of the left-hand-side and we derive:

{p0} =
1
4
ρ∞

D∞
C∞

κ

∫ ∞

−∞

(
∂φ0

∂R

)2

dR − Λ

C∞
{c0}, (26)

where {p0} means the pressure jump between its value at
the interface (φ = 0) and its value at R → −∞ (φ = −1),
the same definition applies to {c0}. We transform eq. (26)
into

{p0} =
1
C∞

σ

ε
κ − Λ

C∞
{c0}. (27)

Equation (26) gives for our “mixture” the equivalent of a
Laplace contribution with an additive correction when the
concentration is discontinuous at the interface. Coming
back to P we get the pressure jump as

{P} = σκ − Λε{c0}, (28)

which is the boundary condition for the pressure.

3.2.2 Conditions on the normal velocities at the moving
front

The moving front is given by δΩ defined by φ = 0. Exam-
ining eq. (7) written in the local moving frame of δΩ, we
get

∂

∂R
ρs

(
vs − Λ0∇c

)
= εγ =

4ac

ρ2
∞

ρs(ρ∞ − ρs)Γ1, (29)

where γ scales as 1/ε so has a noticeable amplitude at the
front but cancels in the liquid and also when the tissue is
at confluence ρs → ρ∞. γ depends also on the availability
of the nutrients. We make the simplest linear choice and
assume that at the front C0(S) the concentration of nutri-
ents depends only on the arc-length (smooth variation of
the concentration field). Taking into account eq. (19), the
right-hand side can be transformed into aΓ1(1 − φ2)C0.
Integrating between the interface (φ = 0) and −∞ (with
φ = −1) we get the interfacial boundary condition for the
cell velocities in the normal direction of the front

(V −V δΩ)·N = −Γ1C0, so N ·V δΩ = −N ·∇P+Γ1C0,
(30)

where VδΩ = ∂tδΩ.

3.2.3 Boundary conditions for the chemoattractant
concentration

Mitotic activity localized at the front induces a supple-
mentary absorption of nutrients at this front. Our work
hypothesis is that this additional depletion will not per-
turb too much the concentration field which will remain
continuous even in the sharp interface limit. It means that
the additive term we must add to eq. (1) or eq. (6) will
have the same dependence as in eq. (29) but with a differ-
ent constant Γ2. In the local coordinate frame both diffu-
sion equations reduce to

∂tc +
1
ε
VR∂Rc =

1
ε2

∂RD(φ)∂Rc − a

2ε
Γ2c(1 − φ2), (31)

with

D(φ) = (β − 1)ρs/ρ∞ + 1 =
1
2
[β + 1 + (1 − β)φ0(R)].

Expanding the concentration field according to eq. (20),
we get that the main order is a slowly varying function
of the orthogonal coordinate r: C0(r, S). Next order in ε
gives

∂RD(φ)∂Rc1 − (a/2)Γ2C0(1 − φ2) = 0, (32)

which gives for R → −∞ (or r → 0−)

β∂Rc1 = β∂rC0 = −(Γ2/2)C0 + f(S) (33)

and for R → ∞ (or r → 0+)

∂Rc1 = ∂rC0 = (Γ2/2)C0 + f(S), (34)
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where capital letters mean functions defined out of the
boundary layer, f(S) being an arbitrary function of the
arc-length. So at zero order we get a continuous concen-
tration field C0(r, S), with a discontinuity in the normal
gradient, the discontinuity in the concentration appearing
only at first order in ε. It will be discarded. Restricting to
the zero order, we finally derive the boundary condition
when a localized mitosis production occurs at the front

Cs(0) = Cl(0) = C0 on ∂Ω (35)

and
βN · ∇Cs − N · ∇Cl = −Γ2C0 on ∂Ω. (36)

Finally we present a summary of the set of equations which
constitutes the sharp-interface limit.

3.2.4 Summary for the sharp-interface model

We take the convention to use capital letters for physical
quantities in the sharp-interface limit. We detail now these
equations in the liquid and in the colony phase. Neglecting
the fluid convection, the diffusion equation in the liquid is
given by

∂tCl = ∇2Cl − δ(Cl − 1), (37)

with δ = α/(ρ∞ + α). In the colony we have

∂tCs = β∇2Cs − Cs + δ. (38)

Boundary conditions to apply at δΩ is the continuity of
C and the discontinuity of the normal gradient N · ∇C

Cl = Cs and N · ∇Cl = βN · ∇Cs + Γ2Cs on δΩ,

Cl = 1 when y → ∞, (39)

with N the normal to the interface. The front velocity is
given by the displacement of the cells

V s = −∇P with ∇2(P + ΛC) = 0. (40)

We assume the viscosity of water negligible. Boundary
conditions for hydrodynamics are then

N · ∂tΩ = N · V s + Γ1Cs,

P = σκ. (41)

If we neglect mitosis, and focus on front migration, there
exits 2 independent parameters which are Λ and σ in the
2D case, 3 in the 3D case with δ. The two first are related
to physical and biological quantities that we recall here:

Λ = Λ̃

(
c∞ρ∞

Dl

)
, while σ = σ̃

(
Kρ3

∞

D
3/2
l τ

1/2
c

)

, (42)

α or δ are parameters much more difficult to evaluate.
Indeed it is the result of viscous and chemical boundary
layers. It changes the effective diffusion coefficient which
becomes Dl → DL/(1 + α), decreasing the length and
the velocity units. Let us study the role of these differ-
ent dimensionless parameters for the existence of planar
solutions.

4 Steady planar front

4.1 Conditions for the existence of steady fronts

Examining more carefully the set of equations, one no-
tices that our growth problem couples a diffusion equa-
tion with consumption and a Laplace equation typical of
viscous fingering. Being a more complex front dynamics
than dendritic or viscous fingering front, we examine the
existence of steady solutions moving along the y-axis at
constant velocity U and we analyze their stability. In the
moving frame, going towards the highest concentration of
the chemical signal, the diffusion equation setting C∞ = 1
for y → +∞, the continuity of C and the discontinuity of
the chemical flux represented by eq. (39) at the free sur-
face gives

C0(Y )=

⎧
⎨

⎩

δ+(C0(0) − δ)ersY/(2β), for Y = y − Ut ≤ 0,

1 + (C0(0) − 1)e−rlY/2, for Y = y − Ut ≥ 0,

(43)
with

C0(0) = (rl + δrs)/(2Γ2 + rl + rs),

rl = (U +
√

U2 + 4δ),

rs = (−U +
√

U2 + 4β). (44)

A solution for the pressure P given by solving eq. (40) is
P0(Y ) = −Λ(C0(Y )−C0(0)) and the front velocity is then

U = Λ(C0(0) − δ) · rs + Γ1C0(0). (45)

For arbitrary values of the physical parameters, this rela-
tion gives an implicit equation for U and must be solved
numerically. Only in the case where δ = 0, one can find
an explicit solution with

U =
(Λ − β)

√
4Λ + (Γ1 − Γ2)2 + (β + Λ)(Γ1 − Γ2)

2Λ
,

(46)
showing that contrary to viscous fingering or dendritic
growth, the velocity of the steady front is fixed by the
complete set of equations and boundary conditions. More-
over a necessary condition for advancing front is that the
chemotatic effect must overcome the diffusion inside the
cellular domain but also the depletion of nutrients due to
mitosis represented by Γ2. Mitosis plays the role of a mo-
tor (proliferation represented by Γ1) but is also a brake
since it consumes nutrients. To study the 3D effect of dif-
fusion, let us make an expansion for small values of δ when
Γ1 = Γ2 = 0 for simplification. We get

U =U0 −
(Λ+β)
2Λ3/2

(
Λ − β

U2
0

)
δ + O(δ2), with Γ1 =Γ2 =0,

(47)
indicating a decrease of the eigenvalue U with a trans-
verse flux, for U0 not too small. Moreover one must keep
in mind the decrease of the length scale of our problem
l0 with decreasing α and δ, so the decrease of the unit
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for velocities. The true physical velocities depend on both
variations. For very weak velocity, much smaller than

√
β

and
√

δ, one gets

U = Λ

√
δ

β

1 − δ
√

β +
√

δ
and U 


√
β or U 


√
δ. (48)

If δ = 0 we refer to eq. (45).

4.2 Stability of planar steady front

4.2.1 General perturbation analysis in 2D and 3D

The steady front can be observed experimentally only if
it is stable. If it is unstable the dispersion relation gives
us some insight on possible nonlinear patterns as reported
in [4]. Let us study first the case without mitosis at the
border. So we imagine a small perturbation of the front δΩ
given by ζ = ε2e

ikxeΩt inducing a perturbation of order
ε2 for the pressure and concentration fields as follows:

P (x, Y, t) = P0(Y ) + ε2 · p±(Y )eΩt cos(kx),

C(x, Y, t) = C0(Y ) + ε2 · c±(Y )eΩt cos(kx), (49)

where P0(Y ), C0(Y ) are the solutions calculated above
eq. (45). Due to the weakness of ε2, our system of equa-
tions, once linearized, can be solved and a calculation te-
dious but without difficulty gives the dispersion relation
Ω as a function of the wave number k. First, the diffusion
equation in the moving front gives for Y > 0

c±(Y ) =

{
c+e−(r+·Y/2), if Y > 0,

c−e(r−·Y/(2β), if Y ≤ 0,

with

r± =

{
r+ = U +

√
U2 + 4(δ + Ω + k2)

r− = −U +
√

U2 + 4β(1 + Ω + βk2)

and

c−(0) = −r+(1 − β) + rs + βrl

r− + r+

U

Λ
, (50)

while the pressure p− reads

p− = −Λc−(Y ) +
(
σk2 + U + Λc−(0)

)
ekY , (51)

given automatically the dispersion relation

Ω = −(σk2 + U)k +
Urs

2β
+ Λc−(0)

(
r−/(2β) − k

)
, (52)

if Γ1 = Γ2 = 0. Ω is a function of r+, r− and c−, them-
selves function of Ω. So eq. (52) is an implicit equation for
Ω which must be solved numerically. However, we cannot
predict the characteristic of the eigenvalue spectrum. In
particular, the existence and unicity of solutions are not
assured without numerical investigation.

4.2.2 Results for 2D diffusion

First, we present the numerical results obtained for Ω as a
function of k in true 2D diffusion. According to eq. (4.2.1)
and eq. (52), Ω is a function of k given in an implicit
way. As a consequence, the number of Ω-eigenvalues is
not obvious to guess a priori and we focus on real and
positive values of Ω. Asymptotic analysis is doable for
k → 0 and for k infinite. Near k = 0, one can show that
a Goldstone mode Ω = 0 for k = 0 exits and the limit k
close to zero is crucial for global stability of the front. For
this limit we get

Ω ∼ β

2Λ3/2

[
Λ + β

U
− ΛU

]
k2 for k → 0, (53)

which proves that the process is unstable for small veloc-
ities and recovers stability at “large” velocities given by

Λ ≥ Λc, with Λc = 1/2(1 + 2β +
√

1 + 8β). (54)

Above this value for Λ the planar front is stable since Ω
is a decreasing function of k. Below Λc or for small values
of U , whatever the value of β the existence of a domain of
unstable modes is usually the signal of strong instability
suggesting dendritic patterns [4–6]. For k → ∞, Ω has an
imaginary part but a real dominant part given by −σk3.
Intermediate values are reached numerically and solutions
are displayed in figs. 4, 5, 6 where we vary one parameter
among (Λ, β, σ), the others remaining fixed. The spectrum
is always the same showing a dendritic dispersion relation:
strong instability at long wavelengths, stabilization by sur-
face tension. Surface tension defines a cut-off that means
a length scale lc above which patterns are unstable. As an
example, radial patterns can be obtained if the radius of
the colony is smaller than the cutoff given by

lc ∼ 2π
σΛ3/2U

β(Λ + β)
∼ 2π

σΛ(Λ − β)
(Λ + β)β

. (55)

4.2.3 Results for diffusion in 3 dimensions

When we take into account the 3D effects of diffusion via
a transverse flux, there is an increase of the velocities for
small U0 values which is responsible of an increase of the
instability behavior as shown in fig. 7. However stability
is recovered for large values of δ that is 0.8, being 1 the
limiting value.

The fact that an experiment is done in a Petri dish does
not suppress the diffusive instability as shown by fig. 7
which is compared to the purely 2D case (with δ = 0).
The transverse flux may give an astonishing strength to
the instability for a weak value of its amplitude δ. In fact
due to the various independent parameters of our model,
the variation is not always monotonous and cannot be
simply predicted.

The dispersion diagrams established here suggest that
in an infinite geometry destabilization of the front gives
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Fig. 4. Dispersion diagram Ω(k) as a function of the wave
number k for different values of the mobility coefficient Λ, ac-
cording to eq. (52). Simulations are performed with δ = 0,
β = 0.1 and σ = 0.5. Notice that the value Λ = 1 is below
Λc ∼ 1.27 corresponding to a unstable planar front but Λ = 2
is above Λc values and the planar front is then stable.
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Fig. 5. Dispersion diagram Ω(k) as a function of the wave
number k for different values of the ratio β between the dif-
fusion coefficient in the colonies and in water, according to
eq. (52). Simulations are performed with δ = 0, Λ = 1 and
σ = 0.5. A secondary branch with Ω < 0 exists for β = 0.8, it
has no physical significance.

patterns which can have infinite amplitude such as in vis-
cous fingering or crystal growth [4–6]: there exists a con-
tinuum of unstable wavelengths in the vicinity of k = 0.
Dendritic patterns are observed for sparsely distributed
bacteria solutions [3] but are more questionable for ep-
ithelia grown on substrate [16,25]. For epithelia, the ratio
between the diffusion coefficient in the tissue and in the
liquid β is probably weak and there exists a transverse flux
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Fig. 6. Dispersion diagram Ω(k) as a function of the wave
number k for different values of the surface tension σ according
to eq. (52). Simulations are performed with δ = 0, Λ = 1 and
β = 0.5.
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Fig. 7. Dispersion diagram Ω(k) as a function of the wave
number k for different values of δ, measure of the transverse
flux according to eq. (52). Simulations are performed with Λ =
0.2, β = 0.1 and σ = 0.05. A secondary branch exists for δ = 0.

represented by δ in eqs. (44), (45). However, the satura-
tion of the solution via the transverse flux that maintains
a source of nutrients everywhere is not always sufficient
to suppress the 2D diffusive instability, imposed by the
migration of the colony. One can argue that perhaps we
are in the regime where the 2D process is stable having
Λ > Λc (54). Clearly the instability of the model imposed
by the behavior at k = 0 is robust. In the next section, we
examine other physical possibilities which may be at the
origin of the relative stability of epithelia.
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4.3 Compact colonies and the sharp interface model

In the previous example, we conclude that at long times,
diffusion will give dendritic patterns, a prediction compat-
ible with bacteria colonies but not with growth of epithe-
lium. Epithelia growing on substrate are more compact,
even when they exhibit instabilities. Contrary to phys-
ical intuition, these fully nonlinear instabilities are not
suppressed by 3D diffusion as we have seen previously.
In this paragraph, we want to investigate the modifica-
tion to limit the strength of the instability. Our scope is
to define the conditions for observation of these compact
patterns with perhaps weak instabilities as observed in in
vitro wound healing experiments. To do so the behavior
of the dispersion relation Ω(k) near k = 0 is crucial, at
large k, the capillary effect behaving as k3 will saturate
the instability and will allow a control of the size of the
instabilities. But the small-k behavior is an indicator of a
possible threshold for growth instability.

First of all we want to examine the possibility to have
a stable front so to avoid a Goldstone mode in this front
problem. To simplify, we restrict to 2D diffusion but we
examine the possibility to have a nonlinear diffusion equa-
tion for the nutrients in the colony. Indeed nonlinearities
in the diffusion equation may have 3 origins: nonlinearities
of the diffusion coefficient as a function of nutrient con-
centration or of the concentration gradient, nonlinearities
that can arise from the chemotactic model with a more
complex mobility law but also from the process of absorp-
tion of nutrients. In biochemistry enzymatic transforma-
tions lead to the Michaelis-Menten law [21] very commonly
used in studies on bacteria colonies [22]. Then the nutrient
concentration in the cellular phase N(Y ) (to avoid confu-
sion with the linear case, we change the notation from
Cs to N) is solution of a complicated nonlinear equation,
while in water we keep our ordinary linear law of diffusion.
There is little chance to find the analytic solution of N(Y ).
We simply assume that it exists and that the requirement
of a finite value at N(Y ) at −∞ selects a unique solution.
Rewriting more formally the dispersion relation Ω(k) (52)
than before, we obtain

Ω(k) = −k(σk2+Λ(N ′
0+n0))+Λ(N ′′

0 +n′
0)+Γ1(N ′

0+n0),
(56)

where the index 0 means that all the values have to be
taken for Y = 0, prime and double prime mean first and
second derivatives with respect to Y , N and n (the first-
order perturbation) being the concentration of nutrients
inside the colony. Without specifying the nonlinearity, one
can show that if

L(N,∇N,ΔN) = 0, (57)

then n is solution of

∂L
∂N

n +
∂L

∂∇N
∇n +

∂L
∂ΔN

Δn = Ωn, (58)

where we assume N,∇N,ΔN independent in this varia-
tion formalism. n satisfies a linear equation and accepts
as a solution ν0N

′(Y ) for Ω = 0 up to a correction in k2,

ν0 being an arbitrary constant of proportionality. Let us
write now the boundary conditions at the front Y = 0.
Continuity of nutrients and continuity of the flux give at
zero order

N0 = C(0) = Cl + 1 and βN ′
0 + Γ2N0 = −UCl. (59)

The zero order prescribes the logarithmic derivative of the
nonlinear solution at the front. At next order we derive

N ′
0 + n0 = −UCl + c+

β(N ′′
0 + n′

0) + Γ2(N ′
0 + n0) = U2Cl − r+c+/2. (60)

If Ω and k vanish, r+ = 2U . Then knowing that n′ = ν0N ,
we get ν0 = −1 except for very specific values of our prob-
lem so irrelevant. This value of ν0 means Ω = 0 and non-
linearities cannot suppress the Goldstone mode. However,
more attention has to be paid on the behavior near k = 0.
If Ω decreases negatively with k2 we get a possibility for
observation of a quasi-steady front. If mitosis is included,
the limit U small is singular but looking for finite values
of U we get

Ω =
β

2Λ

(
Λ + β

Λ − β
− (Λ − β)

)
k2, (61)

which gives the same answer as eq. (53), which corre-
sponds to the linear case. Again the front is expected to
be highly unstable at low velocities. The effect of non-
linearities which have been extensively studied in math-
ematics at the origin of all the variants on the Keller-
Segel model [17] are perhaps more surprising. Analytical
predictions are really difficult to get: for example for the
Michaelis-Menten law [21], we can prove only the existence
of the Goldstone mode. But we cannot do more without
knowing the base solution N0, which results from the solu-
tion of a nonlinear ordinary differential equation (O.D.E).
Recent works [32,33] are concerned by exact derivation of
this kind of (O.D.E.) called Fisher-like equation but we
are not aware of a solution for the Michaelis-Menten law.
We do not consider the case of nonlinear diffusion but
the case of nonlinear mobility for the chemoattractants is
more easy to handle. Nonlinear mobility has been intro-
duced because cells do not measure only the gradient of N
but they can be sensitive to more complex functions. For
the chemotaxis, the model is extended to V = ∇χ(N) the
only restriction being Λ(N) = χ′(N) positive for chemoat-
tractants. In this case, focussing directly on the behavior
for k = 0 we get

Ω = Λ(N0)(N ′′
0 + n′

0) +
Λ1(N0)
Λ(N0)

n0(0)U, (62)

Λ1 being the first derivative of Λ with respect to N . U is
given by a nonlinear equation

U =
Λ(N0) − β
√

Λ(N0)
with N0 = 2U/(U +

√
4β + U2). (63)

One can show that if Λ is a slightly increasing function of
N so that Λ1/Λ 
 1, then we get Ω(0) = − Λ1

2Λ3 (Λ2 − β2)
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Fig. 8. Dispersion diagram Ω(k) as a function of the wave
number k for different values of the mobility coefficient Λ1

given by eq. (62). Simulations are performed with Λ = 1, β =
0.3 and σ = 0.1.

so for k = 0, Ω is negative and a planar stable front can
be observed. This calculation is explicit only if Ω is weak
(see also fig. 8). However for arbitrary values the spectrum
may be more complex as shown by fig. 9 which exhibits do-
mains where Ω has an imaginary part. Considering fig. 8,
for specific values of the parameters, varying Λ1, it is pos-
sible to observe planar fronts (purple curve in fig. 8) and
also a stable, steady periodic pattern with a prescribed
wavelength corresponding to the vicinity of the red curve
in fig. 8. One can argue that the nonlinearity which is
introduced to stabilize the front is “unphysical” since it
has a tendency to increase the linear behavior and usu-
ally nonlinearities are responsible of saturation. However
bacteria use chemotaxis as natural self-engineering adap-
tation [11], especially at low nutrient concentration and
such behavior is typical of small nutrient concentration.

5 Discussion

Recent published experimental papers on migration and
growth of an epithelium [16,12,34,35] do not mention the
possibility of chemotaxis as a possible driving force. So
we use the published data simply to check that it may
be a possible scenario. Let us give an evaluation of the
dimensionless parameters entering into the model. We re-
fer to eq. (42) which makes the link between dimension-
less parameters and physical quantities. Values of the pa-
rameter Λ, motor of our migration process both for the
case of epithelium or bacteria are difficult to find. We
discuss first an epithelium made of MDCK cells experi-
ments [12,34]. Taking into account the fact that the av-
erage velocity of MDCK cells on solid substrate is 40 μm
per hour [12], this value is consistent with our velocity
unit estimated to be

√
Dl/(τc(1 + α)). Indeed according
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Fig. 9. Dispersion diagram Ω(k) as a function of the wave
number k for different values of Λ. Simulations are performed
with Λ1 = 0.025, β = 0.3, and σ = 0.5.

to [1] the uptake time is of order half an hour, Dl in
water is 10−10 m2/s (that we decrease to take into ac-
count α) so our effective Dl ∼ 10−11 m2/s which gives
approximatively 0.7μm/s so 260 μm per hour. The di-
mensionless velocity U = (Λ − β)/

√
Λ (eq. (46)) is then

U ∼ 40/260 ∼ 0.15. β being the ratio between the dif-
fusivity in the tissue and the water is about β = 1/100,
then we deduce that Λ ∼ 0.04 giving a typical wavelength
for instability of order 16σ in dimensionless units. Let us
evaluate now the dimensionless capillary number. In [34],
the tension at the border of a MDCK epithelium is es-
timated to be σ̃ ∼ 0.07 nNμm−1 while the friction on a
rigid substrate is about ζ = 1nN s/(μm)3 which allows to
determine the permeability K = l0/ζ. K being given by√

Dτc/ζ = 1.4105, SI finally gives σ ∼ 3.510−3. Knowing
that the length unit is 140μm we get the typical length
scale for the instability about 8μm which is the cell size
for this particular experiment [12]. This is coherent with
experimental observations but at the limit of validity of
the model.

In a different experiment involving a migrating cell
sheet of Madin-Darby canine kidney, Trepat et al. [35]
also observe an undulation of the advancing front with
a wavelength of order 100μm. They measure the forces
and conclude that there is a traction force perpendic-
ular to the front, a result consistent with our pressure
model P = −Λ(Cs − Csf ), Csf being the front concen-
tration. Estimating the pressure in physical units, we get
P ∼ ΛDlζ/l0 which gives the correct order of magnitude
that is 1000Pa. Moreover the stress grows quite exponen-
tially with the distance from the front also in agreement
with our model.

For bacterial colonies, our model may give a new way
to explain the quasi-exponential behavior of the mass
transfer due to chemotaxy according to eq. (44). Indeed
experimental results aiming to measure Λ̃ are not obtained
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directly but based on a model for the concentration. When
mitosis is subdominant, our prediction for the length de-
cay of chemoattractant concentration is

√
Λ/(Λ−1)

√
Dlτc,

our Λ being itself related to its physical value by eq. (42).
It varies linearly with the bacterium and the chemoattrac-
tant densities. In other experimental geometry, the model
for regular fronts can be adapted without difficulty [36].

6 Conclusion

We have established an analytical model for studying the
stability properties of a class of coupled P.D.E. governing
front evolution due to chemotaxis. Our formulation based
on the mixture model where the interface is diffuse is suit-
able for numerical investigation of living colonies moving
in a chemoattractant field. We consider only chemoattrac-
tants which are not a by-product of the colony itself and
which are consumed by the cells of the colony. Our model
allows to derive the correct boundary conditions when the
front between the colony and the environment is abrupt.
Then the migration of the colony is transformed into a
free-boundary problem which can be addressed analyti-
cally in simple geometries. Here we have investigated pla-
nar fronts and their stability which gives some insights on
the nonlinear behavior of the front. Chemotaxis is known
to be essentially an unstable process which is confirmed
here when the chemotaxis attraction is weak. Surprisingly,
when it increases, the stability of diffusion occurs as for
dendritic growth and the front recovers stability. Also sur-
face tension stabilizes short wavelength perturbations fix-
ing a capillary length, the limit of stability of circular pat-
terns. We investigate also other possible stabilization pro-
cesses. These effects are physically relevant as the satura-
tion of the solution in chemoattractants or a strong but
localized mitosis at the front.

However, if we are successful in explaining the den-
dritic patterns for sparsely distributed bacteria (having
β ∼ 1) deriving a dispersion relation typical of dendritic
growth [4], perhaps the relative compactness of epithelia
as observed in [12,16] may involve more complex interac-
tions. We examine also the possibilities of nonlinearities
of the chemotaxis process concerning the law of attraction
and the uptake. Our conclusion concerning the Michaelis-
Menten law for the uptake, in the absence of known exact
solutions for the planar front is that the Goldstone mode is
maintained and probably this nonlinearity is not enough.
More success concerns nonlinearity in the chemoattrac-
tion itself which does not affect the diffusion equation and
the boundary conditions. Here we can show that typical
mobility laws give stable fronts or weekly unstable fronts.
The main conclusion however is that if we want to in-
terpret epithelia or a priori biofilms [37], elastic effects
must be introduced which is possible in the mixture model
framework [23] as it has been done for tumor growth. Ul-
timately, the comprehension of the shape instability and
the pattern formation in multiphase models is of utmost
importance for a wide range of problems relating to tissue
growth, remodeling and morphogenesis under chemotaxis.
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