
DOI 10.1140/epje/i2014-14041-2

Regular Article

Eur. Phys. J. E (2014) 37: 41 THE EUROPEAN
PHYSICAL JOURNAL E

Morphology and growth of polarized tissues

C. Blanch-Mercader1,2,a, J. Casademunt1, and J.F. Joanny2

1 Departament d’ECM, Universitat de Barcelona, Avinguda Diagonal 647, E-08028 Barcelona, Spain
2 Institut Curie, UMR 168, 26 rue d’Ulm, 75005 Paris, France

Received 17 February 2014 and Received in final form 28 March 2014
Published online: 26 May 2014 – c© EDP Sciences / Società Italiana di Fisica / Springer-Verlag 2014

Abstract. We study and classify the time-dependent morphologies of polarized tissues subject to
anisotropic but spatially homogeneous growth. Extending previous studies, we model the tissue as a fluid,
and discuss the interplay of the active stresses generated by the anisotropic cell division and three types
of passive mechanical forces: viscous stresses, friction with the environment and tension at the tissue
boundary. The morphology dynamics is formulated as a free-boundary problem, and conformal mapping
techniques are used to solve the evolution numerically. We combine analytical and numerical results to
elucidate how the different passive forces compete with the active stresses to shape the tissue in different
temporal regimes and derive the corresponding scaling laws. We show that in general the aspect ratio
of elongated tissues is non-monotonic in time, eventually recovering isotropic shapes in the presence of
friction forces, which are asymptotically dominant.

1 Introduction

The regulation of the growth and shape of tissues is a fun-
damental property of living organisms. The recent devel-
opment of new experimental techniques has thrown light
on the role of force generation at the cellular scale in tissue
morphogenesis. For example, cells can reorganize collec-
tively inducing local deformations and forces, which can
be isotropically or anisotropically distributed, by cell divi-
sion and cell apoptosis [1,2]. Reciprocally, the biophysical
properties of the tissue can alter the state of the cells.
Therefore, it is relevant to study the mechanisms that
control cell organization and shape tissues [3–5]. Cell ori-
entation is essential for tissue elongation. For example,
in the case of plants it has been shown that the corti-
cal array of microtubules set a preferential direction for
cell growth [6–8]. Another example is the wing disk of the
fruit fly Drosophila in which gradients of morphogens are
responsible for the determination of a macroscopic orien-
tation [3,9]. In this article we focus on the deformations
induced at the scale of the tissue shape by oriented cell
division. This mechanism requires two essential ingredi-
ents: cell replication coupled to a global polarization of
the system [10]. The forces produced by this mechanism
in general are anisotropically distributed.

The inclusion of growth in continuum models of elas-
tic tissues has been discussed and applied by several au-
thors [11–13]. However, it has been shown that at suffi-
ciently long time scales, a hydrodynamical description of
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a growing tissue as a viscous fluid is justified [10,14,15].
Our model here extends the approach of ref. [14]. The
constitutive equations of the tissue are similar to those
of an active nematic fluid [16,17]. Cell division is an ac-
tive process, in the sense that it requires a consumption of
chemical energy. It is taken into account both as a source
of matter and as an active local stress. Most of our dis-
cussion deals with confluent tissue layers on a substrate.

This article is organized as follows: In the first section
we present the model and discuss the underlying hypothe-
ses. We then study the dynamics of the small deformations
of an initially circular tissue. In the second and third sec-
tions, we extend our results to larger deformations in two
regimes, either the dissipation during growth is dominated
by friction on the substrate or by tissue viscosity, respec-
tively.

2 Physical model

We aim at describing the time evolution of a tissue with
an arbitrary initial shape and a spatially uniform rate of
expansion. The model is an extension of a previous con-
tinuum approach for polarized tissues discussed in refs. [9,
14], including additional forces that compete with the ac-
tive stresses, such as friction forces with the environment
and effective surface tension at the tissue boundary.

Our physical description is given in terms of the macro-
scopic fields: the cell density ρ, the cell velocity v, the lo-
cal cell orientation characterized by a unit vector p, the
total internal stresses σtot

αβ and the pressure field P . In
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this coarse-grained description, the macroscopic fields are
assumed to be averaged over a small region comprising
several cells.

The cell number balance equation includes a source
term which accounts for the increment in cell number due
to proliferation and the decrease of cell number due to cell
death. We write it as

∂tρ + ∂α(ρvα) = kcρ, (1)

where Greek indices denote Cartesian coordinates and we
adopt Einstein’s summation convention over Greek in-
dices. The growth rate kc > 0 is the difference between
cell division and cell death rates. For simplicity we also
assume that the tissue is incompressible so that the cell
density ρ is assumed to be constant.

Our focus on long time scales, such that local cell re-
arrangements and cell proliferation and cell death events
lead to an effective fluid-like behavior of the tissue [10,14,
15]. Furthermore, a growing tissue must be considered as
an active material because cell division is an active pro-
cess, which requires a continuous consumption of chemi-
cal energy [17]. In this paper we study polarized tissues
where the cells have a well-defined orientation (p), which
we may assume to be fixed by an external field such as
a morphogen gradient. Consequently, we treat the tissue
as an active nematic fluid. The constitutive equation for
the total stress in an active nematic fluids is discussed in
refs. [16,17] and reads

σtot
αβ = η(∂αvβ + ∂βvα) − Pδαβ − σ0pαpβ , (2)

where η is the shear viscosity. The last term on the right-
hand side is the anisotropic active stress. It exists for sym-
metry reasons, if the tissue has a macroscopic nematic or-
der, and reflects that the active (energy consuming) pro-
cess of cell division is spatially oriented. Its amplitude σ0 is
a phenomenological parameter. In principle, within a lin-
ear theory the contribution of cell division/death to the
active stress should be proportional to the growth rate
(i.e. σ0 ∝ kc). However, there may be other contributions
to σ0 due to, for example, the activity of the individual
cells, which consume ATP. A detailed explanation of the
origin of active stresses in a growing tissue can be found in
ref. [10]. Note that for tissues growing in two dimensions
that we mostly study below, the case where σ0 > 0 and p
points in a given direction is equivalent to the case where
σ0 < 0 and p point in the perpendicular direction. With-
out loss of generality, in the following we assume σ0 > 0.

When writing the force balance in the tissue, we in-
clude an internal viscous drag force proportional to the
local velocity field. In a 2-dimensional tissue, growing on
a solid substrate to which it is weakly attached by trans-
membrane proteins, the drag force may be due to the rel-
ative movement between the tissue and the substrate. On
the other hand, for a tissue growing in a 3-dimensional
space, the drag force could be due to the permeation of
an external medium through the tissue [18]. It is worth
mentioning that both mechanisms are fundamentally dif-
ferent. Neglecting inertia, conservation of momentum can

be written as
∂ασtot

αβ − ξvβ = 0,

where ξ is the friction coefficient per unit area or per unit
volume.

In order to simplify the model, we consider that p, kc,
η, σ0 and ξ are spatially uniform. Furthermore, without
loss of generality we choose the coordinates system such
that the polarization p is parallel to the x-axis. Therefore,
the two coupled equations describing the growth of the
tissue are

ηΔv − ∇P = ξv, (3)

∇ · v = kc. (4)

It has been argued by several authors that surface effects
in a tissue can be described in terms of an effective surface
tension [19]. We consider here that the surface tension
γ > 0 is isotropic and we write a mechanical boundary
condition at the surface of the tissue (∂Ω) of the form

σtot
αβ n̂β |∂Ω = −γκn̂α, (5)

where κ denotes the local total curvature of the inter-
face and n̂ is the normal vector at the interface pointing
outwards. This form imposes vanishing tangential stresses
and the Young-Laplace pressure drop condition, assuming
a constant external pressure, and therefore neglecting the
viscosity of the outer fluid. Note that the active stresses do
not show up explicitly in the bulk equations (3), (4), but
are introduced through the boundary condition eq. (5).
The evolution of the tissue shape can then be described
as the evolution of its boundary, which is determined by
the continuity condition at the boundary

Vn = v · n̂|∂Ω , (6)

where Vn is the normal component of the boundary veloc-
ity given by the value of v from eqs. (3), (4), (5), at the
boundary. The dynamics of the tissue is thus formulated
as a free-boundary problem.

Some integral properties of the dynamics can be de-
rived exactly for any shape of the tissue and arbitrary
parameter values. The simplest ones are obtained in ap-
pendix A. The first global property states that the total
area (volume) of the tissue grows exponentially regardless
of the shape, with A = A0 exp (kct) (V = V0 exp (kct)).
This result reflects the fact that we neglect any depen-
dence of the growth rate on stress. Another remarkable
exact result is that, under the assumptions of our model
and regardless of the shape, the center of mass of the tissue
cannot move. This point is not trivial since, in the pres-
ence of friction forces, the motion of the center of mass
of an active polar fluid can be triggered by morphological
symmetry breaking of the boundary [20].

The relative importance of the three different types of
passive stresses in the problem depends on the spatial scale
considered. Capillary stresses are generically dominant for
a small tissue, with high curvature and small velocities.
In the opposite limit, for a large tissue, with large veloci-
ties, friction forces dominate. Viscous stresses are typically
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most relevant at intermediate scales. The material param-
eters of the tissue define three intrinsic length scales that
control the crossover between these regimes. The capil-
lary length Lc ≡ γ/(ηkc) defines the crossover scale be-
tween capillary forces, dominant for smaller scales, to vis-
cous forces at larger scales. Similarly, we define a friction
length Lη ≡

√
η/ξ as the scale where viscous and friction

forces are comparable. At length scales smaller than Lη

viscous stresses dominate the dissipation while at length
scales larger than Lη friction dominates the dissipation.
The combination of these two lengths defines yet another
length scale as Lξ ≡ (LcL

2
η)1/3 = (γ/(kcξ))1/3, which

compares capillary against friction forces. The orders of
magnitude of these length scales for a 2-dimensional tissue
are Lη ∼ 10–100μm and Lc ∼ 1–100μm, for typical val-
ues of the friction coefficient ξ ∼ 103 Pa s/μm2, the growth
rate kc ∼ 1/day, the surface tension γ ∼ 100Paμm and
the shear viscosity η ∼ 105–107 Pa s, respectively [9,21,
22]. Consequently, Lξ ∼ 10–100μm.

In the following, unless explicitly stated, we focus only
on the study of 2-dimensional tissues growing on a solid
substrate.

2.1 Linear perturbation analysis of the circular shape

We consider first a tissue spreading in 2 dimensions with
a circular shape and a radius R(t) in the absence of ac-
tive stresses (i.e. σ0 = 0). Cells are constantly produced
at a rate kc and the constraint of constant density im-
poses a radial flow of cells toward the periphery, which
drives the expansion of the tissue. By solving eq. (4), we
obtain the radial flow field at position r, v0 = (kc/2)r,
where the origin is chosen at the center of the tissue.
Using the force balance equation (3), and the Young-
Laplace law eq. (5) one can calculate the pressure field
induced by the friction forces (there is no viscous contri-
bution in this case). Therefore, the pressure field results
in P0(r, t) = −ξkc(r2 −R(t)2)/4 + ηkc + γ/R(t). The size
of the tissue grows exponentially: Ṙ(t) = kcR(t)/2. In the
absence of active stresses, an initially disk-shaped tissue
remains thus circular and increases its area exponentially
over time. Importantly, if γ = 0 and ξ = 0, this uniform
exponential growth is also exact for any arbitrary shape.
The tissue has a self-similar growth with a uniform scale
factor that grows exponentially in time (see appendix B
for details).

We now consider that the amplitude of the active stress
σ0 is finite but of order ε � 1. In order to quantify the
anisotropy of the tissue, we use the aspect ratio H, de-
fined as the ratio between the major and minor axes.
Taking a circular tissue with radius R(t) as an initial
state, we perform a linear perturbation analysis in ε to
follow the interfacial dynamics. The position of the edge
of the perturbed tissue would be given in polar coordi-
nates by r(θ, t) = R(t) + a2(t) cos (2θ), where a2(t) is of
order σ0, and θ is the polar angle. The perturbation anal-
ysis is rather heavy and it is detailed in appendix C. We
only discuss here the relevant asymptotic limiting cases.
In order to make the discussion clearer, we give in fig. 1 a

Fig. 1. Diagram of states subdivided into the three regions of
dominance of passive forces: viscous (yellow), capillary (red)
and friction (blue). R is the instantaneous radius of the tissue.
The boundaries of the various regimes are defined as R = Lc,
R = Lη and R = Lξ and the dashed curves are the extension
of these boundaries. The transition between regions C and D
occurs for R = Lη. The solid black curve marks the points
where the aspect ratio attains its maximum value, for initial
radius R0 → 0, that is, the envelope curve in fig. 2b (gray
triangle line). For finite R0 the points of maximal aspect ratio
occur below this curve, essentially always in region B .

diagram of states of the tissue where the coordinates are
Lc/R(t) and Lη/R(t). Four asymptotic regions are distin-
guished in this diagram according to the relative values of
the various intrinsic length scales of the problem.

In region A where Lη � R � Lξ, viscous forces dom-
inate the dissipation in the tissue and balance the active
stress. In this regime, the aspect ratio satisfies

dH

dt
≈ −kcξR

2

6η
(H − 1) +

σ0

2η
. (7)

The aspect ratio grows essentially linearly with time
in this region and the shape of the tissue becomes
anisotropic. In the limit ξ = 0, we recover the linear ap-
proximation of the case studied in ref. [14], where the as-
pect ratio grows exponentially in time.

In region B where R � Lη, Lξ, the dissipation is dom-
inated by the friction forces. The aspect ratio satisfies

dH

dt
≈ −kc (H − 1) +

4σ0

ξR2
. (8)

Eventually, at long times, any tissue enters into this regime
where the aspect ratio relaxes to one regardless of its ini-
tial morphology, and reaches a circular shape assymptot-
ically. This implies that if the initial morphology of the
tissue is circular, the aspect ratio increases from one and
reaches a maximum before relaxing back to one.

In the two other regions C and D , the variation of the
aspect ratio is dominated by capillary forces and surface
tension drives the tissue to isotropic circular shapes. In
region C where Lη, Lξ � R the dissipation is dominated
by viscous effects and in addition to the cell division time
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Fig. 2. (a) HM as a function of Lc/Lη for different values of
R0, R0/Lη: 1 (red cross), 0.1 (orange square), 0.01 (pink circle)
and 0.0001 (gray triangle). (b) RM as a function of Lc/Lη using
the same color code.

there is a second capillary relaxation time ∝ ηR/γ. The
aspect ratio varies according to

dH

dt
≈ − γ

ηR
(H − 1) +

σ0

2η
. (9)

In region D where Lξ � R � Lη, the dissipation is
dominated by friction and the capillary relaxation time
is ∝ ξR3/γ. The aspect ratio varies according to

dH

dt
≈ − 6γ

ξR3
(H − 1) +

4σ0

ξR2
. (10)

In order to characterize the anisotropy of a growing tis-
sue, from now on, we focus on the evolution of initially
circular shapes (i.e. H(t = 0) = 1) and denote by R0 the
initial radius. We solve numerically the general equations
obtained in appendix C (C.5), (C.6) for the aspect ratio
at linear order in the deviation from the circular shape,
assuming that the active stress σ0 is small. In general, the
aspect ratio H(t) has a maximum at finite time. We de-
fine HM (Lc, Lη, R0, σ0/ηkc) as the maximum aspect ratio
during a dynamical evolution and RM (Lc, Lη, R0, σ0/ηkc)
as the radius at which the aspect ratio is maximal. As
shown in fig. 2, HM is larger for smaller initial radius.

3 Friction-dominated growth

In this section we study in more detail the friction regime
in which viscous forces are neglected, corresponding to re-
gions B and D . In order to do so, we implement a numer-
ical scheme based on the conformal mapping formulation
derived in appendix D which allows to compute the evolu-
tion of the shape from an arbitrary initial condition, and
therefore to go beyond the linear regime discussed in the
previous section. Conformal mapping techniques provide
a powerful framework to deal with free-boundary Lapla-
cian problems in 2D, in particular to allow for analytical
insights, such as shown in appendix E. The connection
of the friction-dominated regime to similar problems of
Laplacian growth is discussed in appendices D and E.

If R is the average radius of an almost circular tissue,
the friction regime is defined by R � Lη. In this case we
approximate the original physical model for tissue growth
by an incompressible Darcy flow combined with the stress-
free boundary condition

−∇P = ξv, (11)

∇ · v = kc, (12)

P |∂Ω = γκ − σ0n̂
2
x. (13)

The active stress produces an anisotropic force on the edge
of the tissue.

The morphodynamics in the friction-dominated regime
can be understood qualitatively as follows. For R � Lξ,
capillary forces are dominant and therefore the interface
relaxes to mechanical equilibrium faster than it grows
(eq. (10)). Consequently the morphology of the tissue
evolves in a quasi-static manner such that the aspect ra-
tio increases. On the contrary if R � Lξ, friction forces
tend to suppress the effects of the active stresses on the
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Fig. 3. Friction-dominated growth. (a) Temporal evolution of
the shape of an initially circular tissue with R0 = 0.3 and γ =
1, where we show the decrease of the aspect ratio at late stages.
The color code stands for t = 4 (solid black), t = 5 (punctuated
orange), t = 6 (dotted pink) and t = 6.5 (patterned gray). (b)
The solid red curve is the temporal evolution of the aspect ratio
for the left-hand side case. The dashed black curve is eq. (E.6)
for γ = 1 and the corresponding perimeters at each instant
of time of the left-hand side case. Both figures are in units of
σ0/2 = ξ = kc = 1.
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Fig. 4. Friction-dominated growth. (a) Maximum aspect ratio
(HM ) as a function the initial radius R0. Inset: Master curve
obtained by rescaling the radius by Lξ and the aspect ratio by
γ2/3. (b) Radius at which the aspect ratio is maximal (RM ),
as a function of the initial radius R0 for various values of the
surface tension γ. Inset: Master curve obtained by rescaling the
lengths by Lξ. Both figures are in units of σ0/2 = ξ = kc = 1.

morphology (eq. (8)) and consequently the aspect ratio
of the tissue decreases upon growth. In fig. 3, we show a
typical dynamical evolution of the shape and of the aspect
ratio. As in the previous section, the aspect ratio shows a
maximum HM at a finite area (≡ πR2

M ).
The quasi-static growth of the regime R � Lξ can

be described analytically in more detail. In appendix E
we discuss a family of non-trivial shapes for which the
active stresses balance exactly the surface tension, when
the growth rate can be taken as vanishingly small. The
evolution in this early regime is expected to follow quasi-
statically the corresponding sequence of shapes within this
family, as shown in fig. 3b.

In fig. 4, we plot both the maximum aspect ratio HM

and the corresponding radius RM as a function of the
initial radius R0. For both curves, there are clearly two
regions separated by a single length scale which is propor-
tional to the length Lξ = (γ/(ξkc))1/3, which compares
the capillary forces against friction forces.

We now give a simple scaling analysis based on the
perturbation equations (8), (10). For R0 � Lξ, the as-

pect ratio evolves quasi-statically as H(t)−1 ∝ σ0R(t)/γ,
whereas in the large size limit the aspect ratio decays as
H(t) − 1 ∝ σ0/(ξkcR(t)2). Therefore by matching these
two behaviors, we find that the size at which they coin-
cide and the maximal aspect ratio scale as

RM ∝
(

γ

ξkc

)1/3

= Lξ, (14)

HM − 1 ∝ σ0

(γ2ξkc)1/3
, (15)

regardless of the initial size R0.
On the contrary, if R0 � Lξ, the system is already in

the large size limit so H(t) − 1 ∝ σ0/(ξkcR(t)2), and the
maximum aspect ratio is reached for a radius proportional
to R0. In this limit, we therefore obtain the following scal-
ing:

RM ∝ R0, (16)

HM − 1 ∝ σ0

ξkcR2
0

. (17)

In the inset of fig. 4, we rescale the axis to obtain
master curves for RM and HM showing that our numerical
results satisfy these scaling laws.

4 Viscosity-dominated growth

Finally we extend our discussion of the viscous regime de-
fined by R � Lη, corresponding to regions A and C by us-
ing conformal mapping techniques detailed in appendix F.
In this regime, only viscous and capillary forces are consid-
ered. The ratio between these two forces defines the cap-
illary length scale Lc. Contrary to the friction-dominated
regime (i.e. R � Lη), the shape anisotropy grows mono-
tonically over time (fig. 5) because neither the capillary
force nor the viscous force can counterbalance the active
stresses. Nevertheless the interface dynamics depends on
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Fig. 5. Viscosity-dominated growth. (a) Temporal evolution
of the shape of an initially circular tissue with R0 = 10 and
σ0 = 1. The color code stands for t = 0 (black), t = 0.3 (red),
t = 0.6 (orange) and t = 0.9 (pink). (b) Temporal evolution of
the aspect ratio from left-hand side case. Both figures are in
units of 2η = kc = γ = 1.
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Fig. 6. Viscosity-dominated growth. Aspect ratio at the time
point t = 1 as a function of the radius R0 of the initial circular
shape for different values of σ0. The values are in units of 2η =
kc = γ = 1.

the value of the initial radius of the circular tissue (R0)
compared to Lc, as shown in fig. 6. For R0 � Lc, we
recover the self-similar growth found in ref. [9]. On the
contrary if R0 � Lc, capillary effects act during a tran-
sient time estimated to be around t ∼ log (Lc/R0) /kc,
inducing quasi-static deformations of the shape of the tis-
sue. The aspect ratio grows then as H(t) ∼ σ0R(t)/γ as
seen from eq. (9).

5 Model extensions

In our study we have omitted several effects and intro-
duced simplifications for the sake of clarity of the analysis.
Here we briefly discuss how the current scenario would be
enriched or modified by the consideration of some of these
additional effects.

An important restriction of our analysis is to assume
that the rate of cell division and apoptosis does not vary
across the tissue, in particular that is not affected by the
local stress. This may not be justified in particular when
stresses become large, resulting in some type of confine-
ment of the growing regions to the appropriate boundary
layers [23]. Inhomogeneous growth rates are certainly ex-
pected to affect the resulting morphology. In appendix G,
we briefly discuss the problem near homeostatic condi-
tions and we show that the circular tissue can reach a
finite aspect ratio different from one at long times.

Another effect that could be introduced in the formal-
ism is an anisotropy of the effective surface tension (i.e.
γ = γ0 + γ1(p · n̂)2 > 0) [24]. This could play a major role
for small enough tissues and compete with the anisotropic
cell division in defining the transient shapes of the growing
tissue.

Regarding the dynamics of the cell polarization field,
we have simplified the model by imposing that the axis
of cell division is fixed by a spatially homogeneous ex-
ternal field. This is a justified assumption for instance in
the growth of the imaginal disk of the fruit fly Drosophila

melanogaster [9]. More generally, one could consider situ-
ations with a preferential cell orientation at the bound-
aries [25] or the reorientation of cell polarity by shear
flow [26], which may be relevant in other contexts of tissue
morphodynamics.

Finally, throughout this study we have mostly ad-
dressed the case of two-dimensional tissues. The case of
three dimensions is qualitatively similar and is briefly dis-
cussed in appendix H.

6 Conclusion

We propose a hydrodynamic model to study tissue mor-
phogenesis. In a polarized tissue, the orientation of cell di-
visions leads to the existence of anisotropic active stresses
that drive ellipsoidal shapes. The aspect ratio of the shape
has two qualitatively different behaviors depending on the
dominant dissipative mechanism, either viscous or drag
forces. A single length scale arises from the comparison
between these two forces. For viscosity-dominated growth,
the anisotropy builds up monotonically, whereas during
friction-dominated growth, it decreases after a transient
time of the order of the cell division time. Consequently,
the aspect ratio in general shows a non-monotonic behav-
ior, with a maximum at finite time, for which we give sim-
ple scaling laws which depend on the physical parameters
of the tissue.

J.C. and C.B.-M. acknowledge financial support under the
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also acknowledges a FPU grant from the Spanish Government,
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edges support from the European network Mitosys.

Appendix A. Dynamics of the area and the
center of mass

In this section we calculate the dynamical equations for
the area and the center of mass of a 2-dimensional tis-
sue. Note that the argument can be generalized to 3-
dimensional tissues. Both geometrical properties have
their homologues in the harmonic moments formalism [27].

We start from the general result

d
dt

∫

Ω

F (r)da =
∫

∂Ω

F (r)Vndl, (A.1)

Vn being the normal component of the velocity of the in-
terface (eq. (6)). We use the physical model of tissues given
by eqs. (3), (4) where the tissue is on the domain (Ω) and
has a contour ∂Ω. The time evolution of the total area is
governed by the equation

dA

dt
=

∫

∂Ω

Vndl =
∫

Ω

∇ · vda = kcA, (A.2)

where the left-hand side accounts for the mass produced
per unit time. The center of mass position is defined in
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vectorial notation by ARA =
∫

Ω
(x, y)da. Considering first

the x component, we write

d
dt

∫

Ω

xda =
∫

∂Ω

xVndl =
∫

Ω

∇ · (xv) da, (A.3)

=
1
ξ

∫

Ω

∇ ·
(
σtot

xx , σtot
xy

)
da + kc

∫

Ω

xda, (A.4)

= −
∫

∂Ω

γ

ξ
κn̂xdl + kc

∫

Ω

xda, (A.5)

= kc

∫

Ω

xda. (A.6)

The same argument also holds for the y-component of the
center of mass. The instantaneous velocity of the center
of mass is thus

ṘA = 0. (A.7)

Since this result is exact for any shape of the tissue, we
conclude that, within the assumptions of the model, the
active stresses cannot drive a net displacement of the tis-
sue. Note that this result is not trivial, because it is known
that, in general, an active fluid in the presence of fric-
tion forces can indeed sustain motion provided that the
shape of its boundary introduces an appropriate symme-
try breaking [20].

Appendix B. Self-similar growth

In this section, we review the particular case discussed
in ref. [9] where there are neither friction nor capillary
forces (i.e. γ = ξ = 0). Any initial shape evolves in a self-
similar fashion. However, the scaling factors (along and
perpendicular to the orientation of the cells) differ as long
as the active stresses are finite, [9].

In the regime γ = ξ = 0, the tissue behaves as an in-
compressible Stokes flow with a free boundary. We assume
that the polarization of the cells is homogenous across the
tissue and parallel to the x-axis (i.e. p = êx), and the
dynamics of the interface is given by the kinematic condi-
tion (6).

The velocity field inside the tissue is given by vx =
(kc + σ0/2η)x/2, vy = (kc − σ0/2η)y/2 and the pressure
field is constant P = ηkc − σ0/2, where x and y are the
Cartesian coordinates. Importantly, this solution is inde-
pendent of the instantaneous shape of the tissue.

We choose an arbitrary parametrization of a family of
self-similar interfaces, x = λx(t)x(s) and y = λy(t)y(s),
where λy(t) (λx(t)) are the scaling factors in the y and x
directions, respectively, and (x(s), y(s)) is a parametriza-
tion of the contour of the initial shape. Combining these
results, the evolution of the initial contour is specified
by two dynamical equations for the scaling factors λ̇x =
(kc + σ0/2η)λx/2 and λ̇y = (kc − σ0/2η)λy/2, [9]. The
original contour therefore deforms self-similarly.

One of the implications of this result is that a tissue
would preserve a memory of its initial shape while grow-
ing. It is worth mentioning that one cannot eliminate com-
pletely this effect by invoking only capillary forces (i.e.

γ �= 0), because their effects are negligible at length scales
larger than Lc.

Appendix C. Linear perturbation analysis

We take as a starting point the reference solution of a
circular shape with an instantaneous radius R(t) in the
absence of active stresses (i.e. σ0 = 0), which is v0 =
kcr/2 and P0 = −ξkc(r2 − R(t)2)/4 + ηkc + γ/R(t). We
then assume that the amplitude of the active stresses σ0

is finite but small, of order ε. The active stress creates on
the system perturbations of order σ0. We express the new
velocity and pressure field as v = v0 + εδv and P = P0 +
εδP , where δP and δv are the perturbation to the pressure
and the velocity field, respectively. We limit ourselves to
a determination of the shape of the tissue at linear order
in ε, so that the tissue becomes elliptical (r(θ, t) = R(t)+
a2(t) cos(2θ)), where a2(t) ∼ O(ε). In this case eqs. (3),
(4) become

ηΔδv − ∇δP = ξδv, (C.1)
∇ · δv = 0 (C.2)

and the boundary conditions (5), (6) read

(δσtot
αβ − (P0 − ηkc)δαβ)n̂β |r=r(θ,t) = −γκn̂α, (C.3)

Vn = (v0 + εδv) · n̂|r=r(θ,t), (C.4)

where δσtot
αβ = εη(∂αδvβ + ∂βδvα) − εδP − σ0pαpβ is the

perturbation to the total internal stress. We solved these
equations using the computational software Mathematica.
The interface dynamics at linear order in ε, in terms of the
instantaneous radius R(t) and the aspect ratio H(t) =
1 + 2a2(t)/R(t) + O(ε2) reads

dR

dt
=

kc

2
R, (C.5)

dH

dt
= −kc

(
f1

(
R

Lη

)
+

Lc

Lη
f2

(
R

Lη

))
(H − 1)

+
σ0

η
f3

(
R

Lη

)
, (C.6)

where the functions fi, whose asymptotic behavior is dis-
cussed in the main text, are given here in units where
Lη = 1:

f1(R) =
R2

((
R2 + 8

)
− 4

(
R2 + 4

)
Π(R)

)

((R2 + 8)2 + 32) − 4 (R2 + 6) (R2 + 8) Π(R)
,

f2(R) =
6

R3
f1(R),

f3(R) =
4
((

R2 + 12
)
−

(
5R2 + 24

)
Π(R)

)

((R2 + 8)2 + 32) − 4 (R2 + 6) (R2 + 8) Π(R)
,

where Π(R) = I1(R)/(RI0(R)), I1(R) and I0(R) being
modified Bessel functions of the first kind [28].



Page 8 of 11 Eur. Phys. J. E (2014) 37: 41

Appendix D. Conformal mapping formulation
of the friction-dominated regime

The friction-dominated regime described in sect. 3 defines
a new variant of the class of Laplacian growth problems
in the context of the classical problem of viscous fingering
in Hele-Shaw cells [29,30]. These free-boundary problems
have in common a (usually two-dimensional) incompress-
ible flow with a Laplacian velocity potential. The differ-
ent interface dynamics is then determined by the distinct
boundary conditions satisfied by the velocity potential at
the interface. A similar example in a biological context has
been recently discussed in ref. [20]. These problems can
be formulated using conformal mapping techniques, which
usually provide analytical insights and also a convenient
numerical scheme that is competitive with other more gen-
eral boundary-integral methods provided that the shape
boundaries are not very contorted. Following refs. [27,29],
in this appendix we derive an explicit interfacial dynami-
cal equation in the friction-dominated limit (sect. 3) using
conformal mapping techniques.

In the friction-dominated regime, the internal cell flow
is approximated by an incompressible Darcy flow (11)-
(12) complemented by the Young-Laplace condition at the
interface (13). We redefine the pressure and velocity fields
according to P = δP − ξkcr

2/4 and v = δv + kcr/2 such
that the new fields δv and δP satisfy the equations

−∇δP = ξδv, (D.1)

∇ · δv = 0, (D.2)

that correspond exactly to the bulk equations of usual
viscous fingering-like problems [29,30]. Therefore δP is a
Laplacian field. After this change of variables the kine-
matic boundary condition reads

δP |∂Ω =
ξkcr

2

4
+ γκ − σ0n̂

2
x. (D.3)

In this context, the contour of the interface can be
described by a complex function z = f(φ, t) that maps
the unit circle into the physical interface of our tissue, φ
being the polar angle of the circle in the reference domain
and z = x + iy the complex coordinate in the physical
domain. The second variable t refers to time, to indicate
that the interface shape evolves with time. The kinematic
boundary condition in terms of this parametrization reads

δP |∂Ω =
ξkc|f |2

4
+ γκ[f ] − σ0

Re[∂φf ]2

|∂φf |2 , (D.4)

where κ[f ] = Im[∂2
φf∂φf∗]/|∂φf |3. The other interfacial

quantities can be written in terms of the conformal map-
ping as

Vn =
Im[∂tf

∗∂φf ]
|∂φf | , (D.5)

δv · n̂ +
kc

2
r · n̂|∂Ω = −1

ξ

∂φδψ

|∂φf | +
kc

2
Im[f∗∂φf ]

|∂φf | , (D.6)

where δψ is the harmonic conjugate of δP .
Following refs. [27,29], δψ = Hφ[δP ], where Hφ is the

Hilbert transform in the unit circle, defined as:

Hφ[δP ] =
1
2π

P

∫ 2π

0

δP (φ′, t) cot (φ − φ′)dφ′. (D.7)

Therefore combining the previous results, one obtains the
dynamic equation of the contour of the tissue (6):

Im[∂tf
∗∂φf ] =

kc

2
Im[f∗∂φf ]

−∂φHφ

[
kc|f |2

4
+

γ

ξ
κ[f ] − σ0

ξ

Re[∂φf ]2

|∂φf |2
]

. (D.8)

The numerical integration of the dynamics in this regime
is based on this equation, which is reduced into a set of
ordinary differential equations for the coefficients of the
Taylor expansion of the analytical function f(w, t), where
w = eiφ.

Appendix E. Exact stationary solutions in the
friction-dominated regime

In this section we derive a class of exact stable solutions in
the friction-dominated regime in the case where there is no
tissue growth but in the presence of finite active stresses.
These stationary solutions would correspond to situations
where one can claim the existence of anisotropic active
stresses that do not originate in cell division, but on other
active processes of the cells. Even if the only active stresses
are those of cell division, these solutions are still relevant
to the dynamics as a sequence of shapes that the tissue
is following quasi-statically, due to the fast relaxation of
capillary forces (with a time scale (∝ ξR3/γ)) compared
to the time scale of growth (1/kc), so that ξR3/γ � 1/kc.
In this case, the radius can be considered as a slow vari-
able that can be eliminated adiabatically. Remarkably, to
the extent that the tissue dynamics can be considered to
follow these shapes quasi-statically, the analysis of the
morphology is not restricted to a small perturbation of
the circle, since the solutions are exact. At this point it
is worth stressing that such exact solutions in Laplacian-
growth problems with a finite surface tension, where cap-
illary forces can exactly cancel the corresponding driving
forces of the problem, are very rare. The only two non-
trivial situations where this has been shown to be pos-
sible so far in viscous fingering problems are reported in
refs. [31,32]. Remarkably and contrary to those referred
examples, our solutions are here linearly stable and there-
fore they are directly observable and play a relevant role
in the dynamics.

Following the preceding examples, we start with an
ansatz of exact mechanical equilibrium at the interface
with zero flow, which reads

γκ − σ0n̂
2
x = P0 = P1 −

σ0

2
(
n̂2

x + n̂2
y

)
, (E.1)
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Fig. 7. Illustrative examples of exact stable solutions. The pa-
rameter α decreases from left to right. The shapes are oriented
in the vertical axis for convenience.

where P0 and P1 are integration constants. The last equa-
tion is evaluated at the edge of the tissue. Parametrizing
the contour with the arc length (s), eq. (E.1) becomes

γ∂sΘ(s) − σ0

2
cos (2Θ(s)) = P1, (E.2)

where Θ(s) is the angle between the tangent vector at the
interface and the axis of cell polarization, taken as the
x-axis. The analytical solutions belong to the following
family of uniparametric curves:

x(s) =
L

2π

√
α + 1√

2
arctan

⎛

⎝
√

2 cos
(

2πs
L

)

√
α − cos

(
4πs
L

)

⎞

⎠ , (E.3)

y(s) =
L

2π

√
α − 1√

2
arctanh

⎛

⎝
√

2 sin
(

2πs
L

)

√
α − cos

(
4πs
L

)

⎞

⎠ , (E.4)

α2 = 1 +
(

4πγ

σ0L

)2

, (E.5)

where L is the perimeter of the contour. It is important
to stress that in the absence of cell division, the area is a
conserved geometrical quantity, and therefore the perime-
ter is a one-to-one function of the area. In fig. 7, we plot
some examples of the previous solutions. The aspect ratio
of a given solution of this family takes the form

H =

√
α + 1
α − 1

arctan
( √

2√
α−1

)

arctanh
( √

2√
α+1

) . (E.6)

Asymptotic behaviors of the aspect ratio can be found in
the corresponding limits of small and large values of the
dimensionless perimeter σ0L

γ ,

H ∼ 1 + σ0L
6πγ

σ0L

γ
� 1, (E.7)

H ∼ σ0L
4γ log(σ0L/2γ)

σ0L

γ
� 1. (E.8)

Finally, we checked numerically that these solutions are
generically stable to small perturbations.

Appendix F. Conformal mapping formulation
of the viscosity-dominated regime

Conformal mapping techniques can also be used to de-
scribe the evolution in the viscosity-dominated regime, in

which the problem corresponds to a Stokes flow. In this
section we derive the corresponding formulation, taking
ξ = 0.

We first subtract from the physical fields the refer-
ence solution found in the absence of surface tension (ap-
pendix B) as v = δv + (Ax,By) and P = δP + C
where A ≡ (kc + σ0/2η)/2 and B ≡ (kc − σ0/2η)/2 and
C ≡ ηkc − σ0/2. The original incompressible Stokes flows
converts then into

ηΔδv − ∇δP = 0, (F.1)
∇ · δv = 0. (F.2)

These equations are formally equivalent to the hydrody-
namic equations of a passive incompressible isotropic fluid.
The boundary conditions are transformed into

(η (∂αδvβ + ∂βδvα) − δPδαβ) n̂β |∂Ω = −γκn̂α, (F.3)
Vn = δv · n̂ + (Ax,By) · n̂|∂Ω . (F.4)

We have thereby eliminated the active and anisotropic in-
gredients of the original equations. It is now possible to
make use of conformal mapping techniques to solve these
dynamical equations. For more details about the deriva-
tion, we refer the reader to the refs. [27,33].

The pressure field δP is harmonic and the stream func-
tion δψ associated to the velocity field δv is biharmonic.
We define the Airy stress function A as

−δP + η (∂xδvx − ∂yδvy) = −2η∂2
yA, (F.5)

η (∂yδvx + ∂xδvy) = 2η∂2
xyA, (F.6)

−δP + η (∂yδvy − ∂xδvx) = −2η∂2
xA, (F.7)

which by construction is also a biharmonic function. Us-
ing the Goursat representation of biharmonic functions δψ
and A may be expressed in the form

A + iδψ = −z∗μ(z) − χ(z), (F.8)

where z = x+ iy is the complex coordinate, x and y being
the Cartesian coordinates. The two functions, μ and χ
are analytic functions. Using the Goursat representation
and parametrizing the physical interface by a conformal
mapping z = f(φ, t), that maps the contour of a unit circle
into the physical interface, where φ is the polar angle of
the circle in the reference domain and z = x + iy the
complex coordinate in the physical domain, we can rewrite
the stress free boundary conditions (F.3) as

z
dμ

dz
+

dχ

dz
+ μ + G(φ)|z=f(φ,t) = 0, (F.9)

G(φ) =
γ

2η

∫ φ

κ[f(φ′, t)]∂φ′f(φ′, t)dφ′ (F.10)

and the kinematic boundary condition (F.4) as

Im[∂tf
∗∂φf ] = −Im[(2μ + G) ∂φf∗]

+Im
[
f

2

(
σ0

2η
∂φf − kc∂φf∗

)]
, (F.11)

where κ[f ] = Im[∂2
φf∂φf∗]/|∂φf |3. We used these equa-

tions to solve numerically the time-evolution of the tissue
shapes, such as those shown in fig. 5.
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Fig. 8. (a) Dynamical evolution of the radius (eq. (G.1)) of an
initially circular tissue for η̄ = 100. (b) Dynamical evolution of
the aspect ratio (eq. (G.2)) against the instantaneous radius
with a circular tissue as an initial condition. Both figures are
in units of R0 = ξ = kc = 1.

Appendix G. Tissue growth near the
homeostatic state

In this section we briefly discuss the morphodynamics of
a tissue that grows close to the homeostatic state with re-
spect to the physical picture presented in the rest of this
article. The discussion is limited to the friction-dominated
regime and for simplicity we neglect capillary effects. We
consider here a case in which the mechanical environment
of the cell affects the cell state. As a starting point we
take the model given by eqs. (11)-(12) with the bound-
ary condition P |∂Ω = −σ0(n̂2

x − n̂2
y)/2 and the kinematic

equation (6), except that now the growth rate depends
on the local stress, as kc(P ) = kc − P/η̄ > 0. The quan-
tity η̄ has units of a viscosity. Its order of magnitude is
estimated to be η̄ ∼ 109 Pa s for a spheroid composed of
CT26 cells, [23], and the single characteristic length scale
for this system is Lη̄ ∼

√
η̄/ξ ∼ 1mm.

In the absence of active stresses (i.e. σ0 = 0) a cir-
cular tissue spreads isotropically as shown in fig. 8. If
R(t) � Lη̄, we observe an exponential growth which sug-
gests that kc(P ) is roughly homogenous across the tissue,
whereas if R � Lη̄, then the radius increases linearly in
time. This indicates that in the central region of the tissue,
the division and death rates are balanced (homeostatic
conditions) and thus only the cells at a distance of the or-
der of Lη̄ from the edge have a significant net proliferation
rate.

On the other hand, the active stresses are anisotrop-
ically distributed along the edge of the tissue, as well as
the growth rate (kc(P )|∂Ω = kc + σ0(n̂2

x − n̂2
y)/2η̄). In or-

der to study the aspect ratio of the tissue, we performed
a linear perturbation analysis considering σ0 ∼ O(ε).
The shape of the tissue deforms elliptically, (r(θ, t) =
R(t)+a2(t) cos(2θ)), where a2(t) ∼ O(ε). The aspect ratio
is defined as H(t) = 1+2a2(t)/R(t)+O(ε2). The dynam-
ical equations obtained for R(t) and H(t) at linear order

in ε are
dR

dt
= kcLη̄

I1(R/Lη̄)
I0(R/Lη̄)

, (G.1)

dH

dt
= −kc

(
I1(R/Lη̄)2

I0(R/Lη̄)I2(R/Lη̄)
− 1

)
(H − 1)

+
σ0

ξR2

(
−2 +

R

Lη̄

I1(R/Lη̄)
I2(R/Lη̄)

)
, (G.2)

where I2(R/Lη̄), I1(R/Lη̄) and I0(R/Lη̄) modified Bessel
functions of the first kind, [28].

Remarkably, the aspect ratio in the long time limit
saturates to a finite value different from 1, as shown in
fig. 8.

Appendix H. Tissue growth in 3 dimensions

In this section, we justify that the global picture obtained
in the friction-dominated regime (i.e. R � Lη) for 2-
dimensional systems does not change qualitatively in 3
dimensions. As in the 2-dimensional case, we assume that
the flows inside the tissue are described by a Darcy law
for an incompressible fluid

ξv = −∇P, (H.1)

∇ · v = kc, (H.2)

combined with the boundary condition at the surface ∂Ω

P |∂Ω = γκ − σ0n̂
2
x, (H.3)

where κ is the total curvature in 3 dimensions. The x-
axis is taken parallel to the preferential direction of cell
orientation. The movement of the physical contour ∂Ω is
defined by the kinematic equation Vn = v · n̂|∂Ω .

We base our analysis on the moment formalism gener-
alized to 3-dimensional systems [27]. In general, we con-
sider a function L(r), such that ∇2L = 0. Then

d
dt

∫

Ω

L(r)dv = kc

∫

Ω

L(r)dv +
σ0

ξ

∫

∂Ω

n̂2
x(∇L) · n̂da

−γ

ξ

∫

∂Ω

κ(∇L) · n̂da. (H.4)

We use this result for an ellipsoidal boundary (x2/a(t)2 +
(y2 + z2)/b(t)2 = 1), where a(t) and b(t) are the instan-
taneous semi-axes, and for the functions L0(r) = 1 and
L2(r) = x2 − y2, whose integral over the physical domain
Ω are related to the volume and the anisotropy of the
shape respectively. For the sake of simplicity, we limit the
discussion to shapes close to spheres, and so the aspect
ratio H(t) − 1 = O(ε), where ε � 1. We obtain

dR

dt
=

kc

3
R, (H.5)

dH

dt
= −

(
2kc

3
+

4γ

ξR3

)
(H − 1) +

2σ0

ξkcR2
. (H.6)

These equations are very similar to eqs. (8)-(10) so
that the scaling laws found in the friction regime for 2-
dimensional system remain valid in 3 dimensions.



Eur. Phys. J. E (2014) 37: 41 Page 11 of 11

References

1. L. LeGoff, H. Rouault, T. Lecuit, Development 140, 4051
(2013).

2. P. Campinho, M. Behrndt, J. Ranft, T. Risler, N. Minc,
C.P. Heisenberg, Nat. Cell Biol. 15, 1405 (2013).

3. T. Lecuit, L. Le Goff, Nature 450, 189 (2007).
4. D.M. Bryant, K.E. Mostov, Nat. Rev. Mol. Cell Biol. 9,

887 (2008).
5. S. Tlili, C. Gay, F. Graner, P. Marcq, F. Molino, P.

Saramito, arXiv:1309.7432 (2013).
6. Y.K. Murugesan, D. Pasini, A.D. Rey, Soft Matter 7, 7078

(2011).
7. F. Corson, O. Hamant, S. Bohn, J. Traas, A. Boudaoud,

Y. Couder, Proc. Natl. Acad. Sci. U.S.A. 106, 8453 (2009).
8. S.H. Tindemans, R.J. Hawkins, B.M. Mulder, Phys. Rev.

Lett. 104, 058103 (2010).
9. T. Bittig, O. Wartlick, M. González-Gaitán, F. Jülicher,
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