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Abstract. The evolution of an incompletely connected system of species with speciation and extinction
is investigated in terms of random replicators. It is found that evolving random replicator systems with
speciation do become large and complex, depending on speciation parameters. Antisymmetric interac-
tions result in large systems, whereas systems with symmetric interactions remain small. A co-dominating
feature is within-species interaction pressure: large within-species interaction increases species diversity.
Average fitness evolves in all systems, however symmetry and connectivity evolve in small systems only.
Newcomers get extinct almost immediately in symmetric systems. The distribution in species lifetimes is
determined for antisymmetric systems. The replicator systems investigated do not show any sign of self-
organized criticality. The generalized Lotka-Volterra system is shown to be a tedious way of implementing
the replicator system.

1 Introduction

In the light of fossil records, the evolution of species may
appear to be a self-organized critical phenomenon, the
size distribution of extinction events possibly following a
power-law [1–5]. The evolution of species can possibly be
described in terms of a punctuated equilibrium: the sys-
tem of life becomes settled into a stasis, which then be-
comes disturbed by species appearances and avalanches of
extinctions. Consequently, the development of species ap-
pears to miss continuity [6,1,3,7]. A dramatic avalanche
of extinction often is followed by rapid recovery [3,4].

A variety of computational approaches has been used
in order to investigate the evolution of life [8–10]. The
model by Bak and Sneppen [11,12,5], appears to self-
arrange into a critical state. Models of catalytic networks
containing a definite number of species show many of the
features observed in the paleontological records [13–19].
A possibly more realistic evolution model with hierarchi-
cal ecosystems, on the other hand, does not appear to
produce large avalanches of extinctions [20–22]. A self-
organized extinction dynamics is can be reproduced for a
system with a predetermined number of species [23,24].
A model like this of course does not give any insight into
how such a species system evolves in the first place.

A statistically stationary system by definition has con-
stant long-term average properties. In the case of a sta-
tionary system of life, having passed its initial transient
state, species extinctions must be related to the appear-
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ance of new species. Marine life on earth appears to have
been in such an apparently stationary state for most of
the last 500 million years [4]. The Bak-Sneppen model re-
tains the number of living species, and thus corresponds to
a stationary system [11,12,5]. Within the tree-like model
by Vandewalle and Ausloos [25,26], the number of liv-
ing species increases continuously. The model might be
modified to describe a stationary system by introducing
additional species extinctions [27].

One of the most functional ways of modelling ecolog-
ical systems is the use of replicator equations. Replica-
tors refer to systems where a configuration of “strate-
gies” or “species” contributes to the “fitness” or “payoff”
of any particular strategy. The “fitness” or “payoff” in
turn contributes to the concentration of each “strategy”
or “species”. An important contrast with the catalytic
network model is that the fitness regulates concentration
in relation to the existing concentration. In other words,
within the replicator model, parents of the same species
are needed.

Recently, quenched random replicator systems have
been investigated analytically at the limit of a large num-
ber of interacting species [28–32]. Species richness is re-
ported to increase along with reduced symmetry of inter-
actions, as well as with increased within-species interac-
tion pressure [28,32].

Attempts to directly apply random replicator models
in investigations into the evolution of life have either not
produced large, complex ecosystems, or have not resulted
in large, recovering avalanches of extinctions, depending
on the parameters used [16,21,33]. This may be due to the
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region of parameter space investigated not corresponding
to that appearing in reality. New species as immigrants
unrelated to previous species, with fully connected net-
works and initially asymmetric interactions, have resulted
in small systems only [33]. Another case with fully con-
nected, initially asymmetric networks but without within-
species interaction also has resulted in ecosystems of just
a few species [34].

None of the references discussed above explicitly dis-
cusses spatial distribution of species. At first glance, this
appears as a significant shortcoming. Speciation obviously
is intimately related to segregation. Segregation, however,
does not need to be spatial, it may be temporal [35,36].
Details of segregation mechanisms have been neglected
in the references above, and speciation has instead been
treated as kind of a random process. The present author
agrees with such a view and does not discuss the details
of segregation mechanisms.

Spatial distribution indeed does not only affect spe-
ciation but also species co-evolution and the consequent
extinctions. In other words, spatial distribution certainly
affects species interactions. However, a variety of factors
affect the interaction of species. It hardly is feasible to ex-
plicitly consider all such factors. In the mind of the author,
this justifies the representation of species interaction as a
random process. The randomness of species interactions is
here implemented in two ways. Firstly, species are incom-
pletely connected, nonzero interaction coefficients being
randomly assigned and subject to evolution along with
speciations and species extinctions. Secondly, the magni-
tude of the nonzero interaction coefficients is randomly
assigned, and also subject to evolution along with specia-
tions and species extinctions.

System states where observables are scale-free have
been interpreted as critical [37–42]. The origin of the
nomenclature obviously is in phase transitions at a few
particular “critical points” [37,38,42]. In other words, crit-
ical systems show fractal properties, observables being
distributed according to power-laws [37,38,40,43,39,42].
However, power-law distributed observables may appear
simply as a result of a random process, and do not neces-
sarily imply criticality [44,42]. Power-law distributed ob-
servables however are a necessary condition for critical-
ity [44].

Not all systems self-organize to critical points. Scale-
free behaviour may be found simply by tuning system pa-
rameters towards a critical phase transition. It obviously
is disputable whether or not self-organized criticality is
a phenomenon characteristic to wide variety of complex
systems in Nature [8,37–39,41,37,5,42].

We intend to find out whether random replicator sys-
tems with speciation produce large, complex systems, and
how does this possibly depend on parameters of the sys-
tem. First, we introduce a within-species interaction. Sec-
ond, we consider interaction matrices not fully connected.
To us, a fully connected ecosystem appears as a rather
unrealistic assumption. Thirdly, the interactions initiated
among species may be partially symmetric or antisymmet-
ric. Naturally, interaction matrix connectivity and symme-

try, both having random components, may evolve along
with speciations and co-evolutionary processes which lead
to species extinctions. We are also interested in eventual
signs of criticality in the systems, either self-organized or
fixed-point criticality, possibly resulting as power-law dis-
tributed observables, lacking any characteristic size scale.

In the remaining part of this paper, we will first intro-
duce our mathematical model. Then, we will investigate
the effect of the relative magnitude of within-species in-
teraction, as well as initial symmetry and connectivity in
among-species interaction on the model outcome. We will
apply three values of initial species connectivity (1, 0.1 and
0.01) and five values of initial symmetry of interactions
(−1, −0.5, 0, 0.5 and 1). The within-species interaction
will be either equal to or five times the standard devia-
tion of the among-species interaction coefficients. We will
first investigate species diversity. Then, eventual evolution
of connectivity, symmetry of interactions, and average fit-
ness, will be clarified. Distribution of species lifetime, as
well as that of the number of living species will be investi-
gated. Finally, the replicator systems will be converted to
generalized Lotka-Volterra systems, and the effect of such
a conversion on symmetry, as well as the relative magni-
tude of among-species interaction, will be clarified.

2 Mathematical model

We start by creating a species configuration vector of two
species, one species of unit concentration, and another
with a small concentration at an extinction limit of 0.001.
(The choice of this numerical value affects the absolute size
of the ecosystems, as will be discussed at the end of the pa-
per. The sum of concentrations defined this way generally
exceeds unity. Fractional concentration can be produced
in a straightforward manner.) Then we create a random
square interaction matrix of dimension two, matrix ele-
ments drawn from a Gaussian distribution with zero mean
and unit variance. The diagonal of the matrix is then
replaced by the negative of a within-species interaction
pressure u of predetermined mean value and 20% stan-
dard deviation. According to predetermined interaction
matrix connectivity, randomly determined non-diagonal
matrix elements are replaced by vacancies. Connectivity
simply refers to appearance probability of a nonzero non-
diagonal interaction coefficient. Vacancies are symmetric
with respect to the matrix diagonal.

The interaction matrix produced this way corresponds
to the asymmetric case. In other words, non-diagonal in-
teraction coefficients Zij and Zji have zero covariance.
In order to introduce either symmetry or antisymmetry,
some amount of covariance must be induced. This is im-
plemented by replacing Zij and Zji, for i < j, with

Jij = Zij , Jji = ΓZij +
√

1 − Γ 2Zji, (1)

where Γ refers to a symmetry parameter with values
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between unity and negative unity, the value zero cor-
responding to the asymmetric interactions. Correspond-
ingly, Jij and Jji refer to non-diagonal interaction coeffi-
cients with possibly some covariance.

The fitness vector is then produced as the product of
the interaction matrix and the configuration vector x, or
equivalently

Fi =
1

∑
x

⎛

⎝
∑

i�=j

Jijxj − uxi

⎞

⎠ . (2)

Any species concentration is then assumed to change
according to the replicator equation

Δxi = xi

(
Fi −

x · F
∑

x

)
, (3)

which can be rearranged as

Δxi

xi
= Fi − F . (4)

Repeated index does not imply summation in eqs. (3)
and (4).

Equations (2) and (4) are then applied repeatedly until
an equilibrium species configuration is found. The species
configuration vector is then inspected, and species with
concentrations below the extinction limit are removed.
Also the interaction matrix elements corresponding to
extinct species are removed. The extinctions naturally
change the dimensionality of the concentration vector and
the interaction matrix.

Then, the dimensionality of the species configuration
vector, as well as the corresponding square interaction
matrix is increased by one, the concentration of the new
species taken at the extinction limit. The interaction ma-
trix elements for the new species are created according to
the procedure explained above. In other words, a column
and a row are added to the pre-existing interaction matrix,
the matrix elements drawn from a Gaussian distribution
with zero mean and unit variance. The diagonal element
is then replaced by the negative of a within-species inter-
action pressure u of predetermined mean value and 20%
standard deviation. According to the predetermined inter-
action matrix connectivity, randomly determined column
elements are replaced by vacancies, and the corresponding
row elements also replaced by vacancies in order to make
the vacancies symmetric. Some amount of symmetry or
antisymmetry is introduced according to eq. (1).

Then, eqs. (2) and (4) are applied repeatedly again,
and extinctions inspected. Extinct species are removed
from the species configuration vector, and their interac-
tion coefficients from the interaction matrix. Then, an-
other new species is introduced, equilibrium concentra-
tions explored, and consequent extinctions identified. The
speciation, along with consequent extinctions, is repeated
a predetermined number of times.

The solution of the finite difference equations (2)
and (4) is required to proceed smoothly. In other words,

overly large steps in the iteration must be avoided. The
smoothness requirement results from the concentration
changes computed here being due to species interaction,
instead of catastrophes like meteorites or volcano erup-
tions. Any step is first reduced by multiplying eq. (4) by
0.1. Regardless of this, there is a possibility of premature
extinction due to Δxi

xi
≤ −1. It was avoided by inspecting

any value of Δxi

xi
, and in the case of min(Δxi

xi
) ≡ a ≤ −1,

reducing the size of that particular iteration step by mul-
tiplying eq. (4) by −1

2a .
The distribution of species survival times in terms of

speciations was determined using a mean-field approxima-
tion. At the end of any numerical experiment, the proba-
bility density function of extinctions as a function of rel-
ative position within the species configuration vector was
clarified. Then, an approximation of species survival time
was computed for any extinct species as the sum of the
number of living and extinct species speciated after the
very species, the latter being produced using the proba-
bility density function of extinctions.

It is worth noting that eq. (4) is invariant to any trans-
lation of fitness values. It was verified that the results are
not sensitive to small changes in connectivity and within-
species interaction pressure. In addition, replicator dy-
namics is invariant to affine transformations of the fitness
function, modulo change in time scale [45,46]. In the case
of discrete-step solutions, the system trajectory however
may change. There also is a possibility that several equi-
librium species configurations exist. We naturally accept
the first equilibrium which is found.

3 Species diversity

In accordance with previous observations [33,34], fully
connected systems remained small. However, in the case
of the larger within-species interaction pressure, the an-
tisymmetric systems exceeded the size of 100, and even
halfly antisymmetric systems were of size of about 40.

Antisymmetric systems with initial connectivity 0.1
were large and stable, of size exceeding 1000 species. In
the case of the larger within-species interaction pressure,
even halfly antisymmetric systems were of size about 1000.
Symmetric and halfly symmetric systems were small, less
than 40 species. In the case of the smaller within-species
interaction pressure they varied apparently randomly. An
asymmetric system in the case of the larger within-species
interaction pressure fluctuated in size between 80 and 800.

Some trajectories of the number of species as a func-
tion of the number of speciations for initial connectivity
0.01 are shown in figs. 1 and 2. Antisymmetric interac-
tions again result in large, stable systems. Symmetric in-
teractions result in small systems. In the case of the large
within-species interaction pressure (fig. 2), these have an
initial shootout in size. In the case of the small within-
species interaction pressure (fig. 1), the asymmetric sys-
tem has repeated shootouts in size.
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Fig. 1. Number of species as a function of speciations. Initial connectivity among species is 0.01, and within-species interaction
pressure equals the standard deviation of nonzero among-species interaction coefficients. Symmetry parameter values are −1,
−0.5, 0, 0.5 and 1, in the order of reducing system size.
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Fig. 2. Number of species as a function of speciations. Initial connectivity among species is 0.01, and within-species interaction
pressure is five times the standard deviation of nonzero among-species interaction coefficients. Symmetry parameter values are
−1, −0.5, 0, 0.5 and 1, in the order of reducing system size.

4 Evolution of connectivity

In the case of a fully connected system, connectivity does
not evolve. This is because there is no random component
in connectivity.

In the case of systems with initial connectivity 0.1, the
connectivity evolved and fluctuated. The evolution and
fluctuation were negligible in large, stable, antisymmetric
systems. The evolution was significant in small systems,

which correspond to symmetric systems. Fluctuation was
most pronounced in asymmetric systems.

The evolution of system connectivity with initial value
0.01 is shown in figs. 3 and 4. We find again that in the case
of large, stable systems, the connectivity does not evolve
significantly (cf. figs. 1 and 2). In both figs. 3 and 4, there
are two large, stable systems where connectivity remains
at 0.01. Small systems with random component in the con-
nectivity do evolve: in general, the connectivity tends to
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Fig. 3. Interaction matrix connectivity as a function of speciations. Initial connectivity among species is 0.01, and within-species
interaction pressure equals the standard deviation of nonzero among-species interaction coefficients. The markings are the same
as in fig. 1.
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Fig. 4. Interaction matrix connectivity as a function of speciations. Initial connectivity among species is 0.01, and within-species
interaction pressure is five times the standard deviation of nonzero among-species interaction coefficients. The markings are the
same as in fig. 2.

increase. In both of the figures, there are two large, sta-
ble systems where connectivity is retained at 0.01, corre-
sponding to those seen in figs. 1 and 2. There is a system
in fig. 1 where species diversity fluctuates significantly,
and correspondingly the connectivity fluctuates in fig. 3.
A comparison of figs. 1 and 2 with figs. 3 and 4 indicates
that connectivity is inversely correlated to system size:
small systems are highly connected, whereas large systems
remain sparsely connected. The same kind of negative

correlation is visible in the case of the fluctuating asym-
metric system in figs. 1 and 3.

5 Evolution of symmetry

The symmetry of any equilibrium interaction matrix be-
tween punctuations was determined by separating the an-
tisymmetric part, determining the sum of squared matrix
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Fig. 5. Interaction matrix symmetry as a function of speciations. Initial connectivity among species is 0.01, and within-species
interaction pressure equals the standard deviation of nonzero among-species interaction coefficients. The datasets are the same
as in fig. 1.

elements, and relating it to sum of squared non-diagonal
elements of the complete interaction matrix. This results
in symmetries between zero and unity. In order to get sym-
metries consistent with the symmetry parameter appear-
ing in eq. (1), the result was multiplied by −2, and then
unity was added. In other words, the symmetry parameter
is computed for any equilibrium interaction matrix as

Γ = −2
Jij−Jji

2
Jij−Jji

2

JijJij − J2
ii

+ 1, (5)

where indices repeated within a term correspond to sum-
mation, and the numerator and the denominator sum sep-
arately.

In the case of a fully symmetric or antisymmetric sys-
tem, the symmetry does not evolve. This is because there
is no random component in symmetry. In the case of fully
connected systems with small within-species interaction
pressure, apart from the fully symmetric or fully antisym-
metric case, symmetry did evolve. In general, the sym-
metry increased. In the case of the higher within-species
interaction pressure, the symmetry evolved slightly but
mostly fluctuated.

In the case of systems with initial connectivity 0.1,
symmetries with variable components fluctuated and
evolved in small, variable systems. In the case of large,
stable systems that were partially antisymmetric, the sym-
metry did not evolve significantly.

Also in the case of systems with initial connectivity
0.01 we find that in the case of large, stable systems,
the symmetry does not evolve significantly. Small systems
with random component in the symmetry do evolve: in
general, the symmetry tends to increase. These phenom-
ena are demonstrated in figs. 5 and 6. In both of the fig-
ures, there are two large, stable systems, corresponding

to those seen in figs. 1 and 2. In both of the figures there
also is a fully symmetric system where symmetry does not
evolve. Both of the figures also show two systems with
evolving symmetry. In the case of fig. 5, the evolution is
more pronounced, and one of the systems shows strongly
fluctuating size (fig. 1), as well as fluctuating symmetry
(fig. 5).

6 Evolution of average fitness

Average fitness of species within the system presumably
evolves along with the extinctions of low-fitness species.
From eqs. (2) and (3), the average fitness can be rewritten
as

F =
Jijxixj

(
∑

x)2
. (6)

The number of terms in the sum in eq. (6) equals the
square of the system size. However the magnitude of any
term, containing a product of fractional concentrations,
is proportional to system size in the power of −2. Thus,
in the case of a well-connected system, the average fit-
ness does not necessarily change with system size. On the
other hand, in the case of a diagonal interaction matrix,
the number of nonzero terms is linearly proportional to
system size, and consequently the average fitness becomes
inversely proportional to system size. Considering the fact
that the diagonal of the interaction matrix predominantly
contains negative elements, the average fitness would in-
crease along with increasing system size.

According to eq. (6), the average fitness (unlike sys-
tem dynamics, modulo time scale) does depend on the
magnitude of interaction coefficients. We will thus nor-
malize with the absolute predetermined mean value of the
diagonal interaction matrix elements.
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Fig. 6. Interaction matrix symmetry as a function of speciations. Initial connectivity among species is 0.01, and within-species
interaction pressure is five times the standard deviation of nonzero among-species interaction coefficients. The datasets are the
same as in fig. 2.
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Fig. 7. Average fitness of species as a function of speciations. Initial connectivity among species is 0.01, and within-species
interaction pressure equals the standard deviation of nonzero among-species interaction coefficients. The datasets are the same
as in fig. 1.

We find that in the case of large, stable systems, the av-
erage fitness rapidly increases to zero and then retains this
value. On the other hand, the average fitness appears to
evolve continuously in small systems. In systems of fluctu-
ating size, the average fitness appears to fluctuate. These
phenomena are best demonstrated in figs. 7 and 8, which
concern low-connectivity systems. In both of the figures,
there are two large, stable systems, corresponding to those
seen in figs. 1 and 2. The average fitness in these systems

rapidly evolves to the vicinity of zero, and is then retained.
I both of the figs. 7 and 8 there are three evolving systems,
corresponding to figs. 1 and 2. In the case of fig. 7, the evo-
lution is more pronounced, and one of the systems shows
strongly fluctuating size (fig. 1), as well as fluctuating av-
erage fitness.

It is worth noting that in the case of a diagonal system
of two species of equal concentrations and equal fitness
eq. (6) results as average fitness of −0.5, and this value is
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Fig. 8. Average fitness of species as a function of speciations. Initial connectivity among species is 0.01, and within-species
interaction pressure is five times the standard deviation of nonzero among-species interaction coefficients. The datasets are the
same as in fig. 2.

observed as a dominating initial value in figs. 7 and 8. In
the case of fully connected systems (not shown in the fig-
ures), the initial average fitness is not necessary negative,
and it typically evolves and fluctuates.

7 Distribution of species lifetime

Most species become extinct during their very speciation
cycle, and greater lifetime probabilities are very low. How-
ever, the lifetime distribution of species varies very signif-
icantly along with the parameters. In the case of large,
stable systems, some species survive over tens of thou-
sands of speciation cycles. On the other hand, in small
systems with symmetric interactions only a few of a thou-
sand species survive until the next speciation cycle. These
phenomena are demonstrated in figs. 9 and 10, which con-
cern system of initially low connectivity. The distributions
in figs. 9 and 10 have been produced on the basis of eight
separate system trajectories each of 30000 speciations. In
both of the figures, there are kinds of two large, stable sys-
tems, corresponding to those seen in figs. 1 and 2. In the
case of fully antisymmetric systems of low connectivity,
the distribution of species lifetimes is apparently skewed
exponential (figs. 9 and 10). The species lifetimes certainly
do not follow any power-law.

8 Distribution of number of species

The avalanche size in large, stable systems is rather nar-
rowly distributed, almost all avalanches being smaller

than ten extinct species. The number of avalanches ap-
pears to be reduced roughly in proportion to the loga-
rithm of avalanche size. In other words, the change rate of
avalanches as a function of avalanche size is approximately
inversely proportional to avalanche size. The avalanche
size naturally also is narrowly distributed in small sys-
tems.

Obviously, the avalanche size distribution is related to
system size distribution. Large avalanches of extinction
may appear only in large, variable systems. Figures 11
and 12 show the cumulative distribution of system size in
relation to its maximum size. The distributions have been
produced on the basis of eight separate system trajectories
each of 30000 speciations. We find that significant variabil-
ity appears mostly in small systems. In the case of large,
stable systems, the number of living species typically is re-
tained above 80% of the maximum. However there might
be transition systems showing significant variability but
also appreciable size.

Interestingly, fig. 11 shows that in asymmetric systems
of moderate within-species interaction pressure over 90%
of observations are confined within 10% of species abun-
dance. This confirms that the strongly varying trajectory
in fig. 1 is not coincidental. On the other hand, the distri-
bution of species abundance in slightly symmetric systems
in fig. 12 is likely to be related to the initial shootout of
system size shown in fig. 2.

9 Transformation to Lotka-Volterra systems

Let us consider the mapping of the interaction ma-
trix of the random replicator system into a generalized
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Fig. 9. Cumulative distribution of species lifetime. Initial connectivity among species is 0.01, and within-species interaction
pressure equals the standard deviation of nonzero among-species interaction coefficients. The markings are the same as in fig. 1.
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Fig. 10. Cumulative distribution of species lifetime. Initial connectivity among species is 0.01, and within-species interaction
pressure is five times the standard deviation of nonzero among-species interaction coefficients. The markings are the same as in
fig. 2.

Lotka-Volterra system [33] as

Aij = Jij −
Jijxi∑

x
, (7)

where Aij are the Lotka-Volterra interaction coefficients,
giving the effect of species j concentration on the relative
change rate of species i concentration.

It is worth noting that several properties of the interac-
tion matrix may change along with the mapping. Firstly,

vacancies vanish from the interaction matrix. The Lotka-
Volterra system corresponding to an arbitrary replicator
system is in general almost fully connected, even if some
of the connections may be weak. Secondly, symmetries
may change. Thirdly, the relative contribution of among-
species interaction may change.

We find that from fig. 13 that the symmetry of a Lotka-
Volterra system, determined according to eq. (5), does
not differ drastically from the corresponding replicator
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Fig. 11. Cumulative distribution of relative number of species. Initial connectivity among species is 0.01, and within-species
interaction pressure equals the standard deviation of nonzero among-species interaction coefficients. The markings are the same
as in fig. 1. The first 5000 speciation cycles are excluded from the data.
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Fig. 12. Cumulative distribution of relative number of species. Initial connectivity among species is 0.01, and within-species
interaction pressure is five times the standard deviation of nonzero among-species interaction coefficients. The markings are the
same as in fig. 2. The first 5000 speciation cycles are excluded from the data.

system. In cases where the symmetry of a replicator sys-
tem evolves significantly, also the symmetry of the corre-
sponding Lotka-Volterra system evolves (fig. 13, cf. fig. 5).
The same is true for the larger within-species interaction
pressure (cf. fig. 6), as well as for initial connectivity 0.1.

The relative magnitude of among-species interaction is
defined as the sum of squared among-species interaction

coefficients in relation to the sum of squared within-species
interaction coefficients. In other words, the relative mag-
nitude of among-species interaction is

ASI =
JijJij − J2

ii

J2
ii

(8)
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Fig. 13. Interaction matrix symmetry within a Lotka-Volterra system, as a function of the symmetry of the replicator system.
Initial connectivity among species is 0.01, and within-species interaction pressure equals the standard deviation of nonzero
among-species interaction coefficients. Symmetry parameter values are −1 (circles), −0.5 (crosses), 0 (triangles), 0.5 (squares)
and 1 (diamonds). Mapping of the replicator system into the Lotka-Volterra system has been after 5000 and 30000 cycles of
speciation.

and similarly for the Lotka-Volterra coefficients Aij .
Again, the numerator and the denominator sum sepa-
rately.

We find that from fig. 14 that the relative among-
species contribution within a Lotka-Volterra system may
differ drastically from the corresponding replicator sys-
tem. In particular, in small systems with relatively weak
within-species interaction and consequently relatively
strong among-species interaction, the Lotka-Volterra sys-
tem tends to show significantly lower relative among-
species interaction (fig. 14).

10 Discussion

The evolution of a system of species in terms of random
replicator networks was investigated. The mathematical
model results in finite size of ecosystems as reported in
figs. 1 and 2. The absolute ecosystem size naturally de-
pends on model parameters. The average species concen-
tration in relation to the speciation concentration is

x

ε
= 1 +

1
nε

, (9)

where n is the number of species. eq. (9) simply results
from the first species appearing at unit concentration, and
the following species at concentration ε. Equation (9) in-
dicates that the ecosystem size depends on the choice of
the speciation concentration.

The replicator ecosystems investigated in this paper
become large and complex, provided the interactions are

predominantly antisymmetric. This corresponds to sys-
tems with predators and parasites, instead of systems con-
sisting of mutually competitive or symbiotic species. A
co-dominating feature is within-species interaction pres-
sure: large within-species interaction increases species di-
versity. Even if species diversity is the larger the greater
the within-species interaction pressure and the lower the
connectivity, both of these factors reduce the relative con-
tribution of among-species interaction on species fitness.

Average fitness evolves in all systems, however symme-
try and connectivity evolve in small systems only. New-
comers get extinct almost immediately in symmetric sys-
tems. Even in antisymmetric systems, they have the great-
est extinction probability, the distribution in species life-
times being apparently skewed exponential. Thus most
of the species have a short lifetime, whereas some en-
dure. This appears to correspond with paleontological
findings [47,42,48,49].

The size of extinction avalanches being narrowly dis-
tributed, the replicator ecosystems appear either large and
stable or small and possibly variable. Fluctuations of all
magnitudes, probably distributed according to a power-
law, might imply criticality [5]. Consequently the replica-
tor ecosystems do not appear as critical systems. Transi-
tion systems between small, variable and large, stable sys-
tems can be produced by tuning the parameters. Such sys-
tems may have a significant magnitude of variation. How-
ever there is no indication that the replicator ecosystems
would self-organize into a critical state. Provided the evo-
lution of a system of species in Nature is a self-organized
critical process [1–5], the replicator ecosystems investi-
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gated in this paper do not appear to reproduce this fea-
ture. Such a feature however is not indisputable [42,4,24].

It is worth noting that changing nearest-neighbor in-
teractions into random interactions, deteriorating spatial
power-law correlations into a delta function, appear to de-
teriorate self-organized criticality in a classical toy model
of evolution, even if some power-law distributed observ-
ables remain [44]. However, even systems without spatial
correlations may be considered critical provided activity
does not vanish, but infinitely retains the fractal temporal
geometry [44,39].

It certainly would be of academic interest to intro-
duce one-dimensional nearest-neighbor interactions into
the replicator system. Two-dimensional spatial interac-
tions certainly would have more correspondence with real
life. Such an arrangement might partially correspond to
metapopulation dynamics [50–54]. Clarification of spatial
correlations in replicator system however might be com-
putationally rather demanding.

Transition to generalized Lotka-Volterra system does
not significantly affect symmetry or relative dominance of
within-species interaction in large, complex systems. In
small, variable systems, the relative dominance of within-
species interaction appears greater in the Lotka-Volterra
interaction matrix.

Regarding the Lotka-Volterra system, any differential
change of species concentration is the same as in the case
of the replicator system (eq. (3)), provided the interaction
matrix is as given in eq. (7). However the interaction ma-
trix given in eq. (7) depends on the species concentration
vector, in addition to the interaction matrix of the replica-

tor system. This means the interaction matrix should be
reproduced every time the concentrations change. Finding
an equilibrium species concentration after any speciation
event typically requires many changes in the species con-
centration vector. In this sense, the Lotka-Volterra model
may be viewed as a tedious way of implementing the ran-
dom replicator model.

It is still worth considering why the symmetry of the
corresponding Lotka-Volterra system does not differ dras-
tically from the symmetry of the replicator system. The
latter term of eq. (7) actually is a column-differential of
the average Fitness (eq. (6)). In the case of large systems,
the latter term of eq. (7) may average towards zero. This
obviously is the case if the average fitness develops towards
zero (cf. eq. (6), figs. 7 and 8). In the case of small systems,
an eventual reason may be that the latter term of eq. (7)
tends to have symmetries which do not drastically differ
from the symmetries of the first term. The latter may hold
in particular if the small systems are symmetric, as they
tend to be in the present results (fig. 5).

Another issue worth considering is why the relative
among-species contribution of the corresponding Lotka-
Volterra system mostly does not differ from that of the
replicator system, but does become reduced in small sys-
tems with weak within-species interaction (fig. 14). In
the case of large, stable systems, where the latter term
of eq. (7) sums towards zero (eq. (6), fig. 5), there actu-
ally is not much difference in the interaction matrices of
the Lotka-Volterra and the replicator systems. In the case
of small, variable systems the average fitness is predom-
inantly positive (fig. 7). Then, the latter term in eq. (7)
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is predominantly positive. Consequently, the magnitude
of the diagonal terms is increased by eq. (7), which re-
duces the relative magnitude of among-species interaction
within the Lotka-Volterra interaction matrix. It is however
still worth noting that, the Lotka-Volterra model possibly
is not much more than a tedious way of implementing the
random replicator model.

The author is grateful to Drs. Tobias Galla and Jan Åström
for their advice regarding computations.
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