
Eur. Phys. J. B (2015) 88: 164
DOI: 10.1140/epjb/e2015-60106-6

Colloquium

THE EUROPEAN
PHYSICAL JOURNAL B

From seconds to months: an overview of multi-scale dynamics
of mobile telephone calls
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Abstract. Big Data on electronic records of social interactions allow approaching human behaviour and
sociality from a quantitative point of view with unforeseen statistical power. Mobile telephone Call Detail
Records (CDRs), automatically collected by telecom operators for billing purposes, have proven especially
fruitful for understanding one-to-one communication patterns as well as the dynamics of social networks
that are reflected in such patterns. We present an overview of empirical results on the multi-scale dy-
namics of social dynamics and networks inferred from mobile telephone calls. We begin with the shortest
timescales and fastest dynamics, such as burstiness of call sequences between individuals, and “zoom out”
towards longer temporal and larger structural scales, from temporal motifs formed by correlated calls be-
tween multiple individuals to long-term dynamics of social groups. We conclude this overview with a future
outlook.

1 Introduction

Electronic records have revolutionised studies of human
social behaviour. Instead of having to rely on field ob-
servations or costly questionnaire-based surveys, today’s
social scientists can follow social interactions between mil-
lions of individuals with the help of email and social me-
dia logs as well as CDRs (Call Detail Records) extracted
from billing systems of mobile telephone operators. In ad-
dition to social scientists, this data-driven movement has
attracted large numbers of physicists, interested in a va-
riety of topics such as collective behaviour and emergent
network structures. The term computational social science
has been coined to describe this new field of inquiry [1].

Data sets on mobile telephone calls have certain ad-
vantages over other sources for studying social behaviour.
First, mobile telephones are ubiquitous and used by all age
groups and in all social strata, whereas the user base of,
say, Twitter cannot yet be considered as representative of
the general population. Second, a phone call needs to be
picked up before its details are recorded as CDRs by the
operator (caller, callee, time, duration). Hence, CDRs are
records of verified, time-stamped one-to-one communica-
tion. This greatly facilitates constructing social networks
from the data, and especially allows for temporal analysis
of communication patterns, to the contrary of e.g. emails
where recipient lists may be long and where there is no
guarantee when (or if!) an email has been actually read.

Because of the above, mobile phone call records have
been used in numerous studies on diverse topics [2]: social
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network structure (e.g. [3,4]), geography of social rela-
tionships (e.g. [5,6]), disaster response (e.g. [7]), economic
development (e.g. [8]), and human mobility patterns
(e.g. [9]), to name a few. In the earliest investigations,
it was typical to aggregate calls between individuals over
time and treat the resulting networks as static [3], or to
consider slow dynamical processes such as dynamics of
social groups being formed and merged [10]. Recently,
however, there has been increased interest in dynamics
on multiple time scales – time stamps of individual calls,
statistics of inter-call times, and their network-level con-
sequences have become focal topics (e.g. [11–13]). This is
both because of the rich dynamics observed in empirical
data, and because of the added level of detail for under-
standing human behavioural patterns. At the same time,
there has been a general increase of interest in temporal
networks, networks that consist of nodes that are con-
nected by events or contacts only at specified times [14].

In this paper, we attempt to provide a brief overview
of what is known to go on in mobile telephone communi-
cation and related social networks at different time scales,
from short to long. This range of time scales is also re-
lated to structural scales, as illustrated in Figure 1. At the
shortest time scales the focus is on the timings of individ-
ual calls and their correlations, and the relevant structural
units are nodes and ties. Moving on to dynamics on longer
time scales, the focus gradually shifts to sets of ties, such
as egocentric networks – sets of ties surrounding an in-
dividual – and social groups and communities. Finally,
there is dynamics at the level of entire networks. A future
outlook – where the field is heading, and where should it
be heading – is given at the end.
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Fig. 1. An overview of temporal and structural scales in mobile call networks, from activity on short time scales at the level of
ties and nodes to slower dynamics at mesoscopic and network-wide scales.

2 How to construct social networks
from CDRs

Before we address the network dynamics that are at the
focus of this article, let us briefly explain how social net-
works are constructed from CDRs.

Typically, the source data consists of entries contain-
ing at least the following items: caller id, callee id, time
of event, duration of event (if any), event type (e.g. call,
text message or multimedia message). These entries span
some range of time, e.g. a month or six months. Often, the
data has been filtered to only contain ids of customers of
the source operator, and perhaps only those of private sub-
scribers (non-company users). The ids are typically hashed
versions of the original phone numbers – surrogate keys
– generated for privacy reasons at or close to the data
source.

An unweighted, static social network can then be con-
structed simply by considering the ids as nodes, and con-
necting two nodes by links if there are call or message
events between them in the data. Here, some filtering is
usually applied, e.g. by requiring that there are one or
several calls from i to j and vice versa for an i− j link to
exist. One may also consider link weights, that is, social
tie strengths, computed either as total numbers of calls
or total call duration between two individuals [3]. Obvi-
ously, for such static aggregated networks, the time span

covered by the data has an effect on the outcome [15]. The
simplest way of constructing dynamic networks is then to
split the data into consecutive time windows and apply
the above procedure to each window, yielding a discrete
time series of time-dependent links that may be weighted.
For the most fine-grained dynamics, the concept of links
is practically discarded as links are only considered a sub-
strate for communication events. The events themselves
form temporal networks, where callers and recipients are
linked by a time-stamped contact only at those time points
when there is a call (or message) in the CDR data. This
is the case when activity patterns are studied at nodal or
tie level.

3 Activity patterns at the level of nodes
and ties

3.1 Human communication is bursty

Let us now begin our journey from the smallest towards
the largest by looking at the very atoms of communica-
tion, the individual communication events. Since we are
interested in the time domain, it is then natural to fo-
cus on the timings of events: what can we say about their
properties and statistics? It has become apparent in the
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a)

b)

time t
Fig. 2. (a) Timeline of all outgoing calls of one individual
for one month, (b) timeline of calls from the same individual
to his/her three top acquaintances. In network terms, (a) rep-
resents the timeline of a node, and (b) the timelines of links
(social ties) (data from [19], figure after [20]).

recent years that human activity in general is rarely uni-
formly randomly distributed in time. Instead, human ac-
tivity patterns are commonly bursty [16] – there are rapid
bursts of successive events that are separated by longer
periods of inactivity. Mobile telephone calls are not dif-
ferent: time series of calls are typically bursty, and ac-
cordingly, the distribution of times between calls is heavy-
tailed [11,12,17,18]. Figure 2 displays an example of this
alternation between bursts of calls and periods of no com-
munication, for one individual and three of his/her social
ties. All displayed time series are clearly bursty, with a
high level of variance in times between successive calls.

The level of burstiness in a time series can be measured
with a single quantity B =

(
σΔt − Δt

)
/

(
σΔt + Δt

)
,

where σΔt is the variance and Δt the mean of inter-event
times Δt [21]. However, it pays off to inspect the statis-
tics of inter-call times in more detail. At first, it would
seem natural to look for burstiness in the statistics of call
timings by simply inspecting the probability density func-
tion (PDF), P (Δt), of all times Δt between successive
calls (either of an individual, or associated with one social
tie). However, the result would be difficult to interpret,
as it would arise from a mixture of inhomogeneities: it is
known that the general activity levels of individuals and
the number of calls on each of their links are also broadly
distributed (see, e.g., [3,19,22]). Because of this, the typi-
cal way of characterising the statistics of inter-call times,
introduced in [11], is to first group either the individuals
or their ties according to their total number of calls. Then,
one can compute separately for each group a scaled version
of the inter-call time PDF, P (Δt/Δt), where Δt is the av-
erage inter-call time computed for the group in question.
It has been observed that this results in data collapse,
where the scaled PDFs for different groups closely match,
both for inter-call times of individuals [11] and inter-call
times of ties, i.e. between pairs of individuals [12,13].

Figure 3 displays the scaled inter-call time distribu-
tions for ties, computed for a subset of the data used in
reference [12]. There are three regions of interest. First,
for low Δt/Δt, there is no data collapse, indicating the
existence of a time scale that does not depend on average
inter-call times. This time scale has to do with repeated
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Fig. 3. Probability density functions of scaled inter-call times
on edges, i.e. between pairs of individuals. Because of the broad
distribution of call activity levels of links, links have been
grouped according to their number of calls. Then, for each
group, the PDF of inter-event times Δt/Δt has been calcu-
lated separately, where Δt is the average inter-call time for the
group.

and forwarded calls, and we will return to this in Sec-
tion 3.2. The non-scaling region is followed by a power-law
decay of inter-call times, indicating the presence of bursti-
ness in the data. Finally, the PDF drops steeply; this can
be associated with the effect of a finite observation period.
See reference [23] for a discussion on estimating true inter-
event time distributions from finite observation periods.

As seen above, the timings of calls are bursty both
for individuals (nodes) and their social ties (links). Which
elements, then, are the drivers of burstiness? Is link bursti-
ness “inherited” from the burstiness of nodes, or is node-
level burstiness merely a consequence of the links being
bursty? In reference [20], Karsai et al. argue that the lat-
ter explanation is correct. Their argument is based on
correlations within call sequences on links, that is, be-
tween pairs of individuals. The existence of such corre-
lations at the nodal level was shown in reference [24] by
considering the distribution of the numbers of events E
in bursty periods, that is, trains of calls where each suc-
cessive call takes place within some δt time units. The
distribution of event numbers P (E) was seen to follow a
power law in the original data, P (E) ∝ E−β , whereas for
randomised reference data with shuffled inter-call times
on links Pref (E) ∝ e−E. This shuffled reference corre-
sponds to a case where the inter-call time distribution of
links is the same as in the original data, but all correla-
tions have been removed. Since P (E) �= Pref (E), there
are correlations within the call trains. It should be noted
that there are other suggested explanations; it has been
argued based on e-mail data that burstiness results from
the interplay of Poissonian processes and circadian and
weekly patterns [25]. Reference [26] claims that this is not
the case, based on a procedure that removes the effects of
such patterns from CDR data.
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The underlying network structure can have dramatic
effects on dynamics taking place on networks, and this
is also true for temporal networks and their inhomo-
geneities. Especially, the effect of burstiness on spreading
processes on temporal networks has been a hot research
topic lately. The studied spreading processes include sim-
ple, deterministic Susceptible-Infectious (SI) spreading
where contact events always transmit an “infection” from
infectious to susceptible individuals, as well as more com-
plex processes, such as threshold dynamics. Simulations
of such processes on top of empirical contact sequences
have shown that non-Poissonian inter-event times have ef-
fects on spreading dynamics in email networks [17,18], call
networks [12,13,27,28], contact networks [29], and in var-
ious temporal network models [30,31]. For temporal net-
works of mobile telephone calls, the current understand-
ing is that burstiness slows down network-wide spreading
as compared to a reference case of Poissonian inter-call
times [12,27]. However, it may also speed up the very early
stages of spreading dynamics. The slowing-down because
of burstiness has a simple explanation: high variance of
inter-call times increases the expected waiting times on
links. This is the classical waiting time paradox. Another
way of viewing the effect of burstiness is to consider the
latencies of temporal paths consisting of time-respecting
sequences of calls [32]: temporal paths take longer to tra-
verse when call sequences are bursty, and deterministic SI
spreading by definition follows the fastest temporal paths.
However, the general picture of the effects of burstiness is
still far from complete; there are conflicting results and
special cases [29,31].

3.2 There are temporally correlated call patterns

Moving beyond individual nodes and links towards larger
network neighbourhoods, it is natural to expect that the
timings of calls should reflect social behaviour in groups.
Here, at the smallest level, one would expect to see tim-
ing correlations between calls to and from one individ-
ual’s acquaintances, i.e. between calls on adjacent links.
This is indeed the case – such correlations are the reason
for the non-scaling region in the distribution of inter-call
times (Fig. 3, [12,13]). The lack of data collapse indicates a
time scale measured in real units of time instead of group
averages. The time scale in question is ∼20–30 s and it
corresponds to the typical time it takes to return or for-
ward a call (get a call and then call someone else). The
peak around 20–30 s is clearly visible in the shapes of trig-
gered time correlation functions in reference [28] (“density
of preceding events”). Correlated timings of calls around
individuals play a major role in the dynamics of thresh-
old processes simulated on mobile call networks [28], and
a lesser role in the dynamics of SI spreading [27]. This
has been seen with the help of temporal reference models
where link-link correlations have been removed. For SIR
(Susceptible-Infectious-Recovered) spreading with small
to moderate transmission probability, such correlations
facilitate spreading and cascades are larger than for a
Poissonian reference [13].
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Fig. 4. Counts of triangular 3-call motifs in time-stamped
mobile phone call data. After [36].

It is natural to assume that often, there is some
(causal) connection between subsequent calls involving the
same individual, given that the calls follow one another
within some short time difference Δt. Such a connection
may be related to information transmission and forward-
ing, or received information triggering further calls (“You
should call Mum.”). Then, one may group subsequent calls
into sets with the hope of finding patterns of interest. In
reference [33], Kovanen et al. introduced the concept of
temporal subgraphs as a way of achieving this grouping.
The concept of temporal subgraphs builds on the notions
of Δt-adjacency and Δt-connectivity. Two calls are Δt-
adjacent if they share a node and take place within Δt
time units, and two calls are Δt-connected if one can
trace a path of Δt adjacency between them. Temporal
subgraphs are then defined as sets of Δt-connected calls.

Analogously to the concept of motifs [34,35] in static
networks, one may extract all different temporal sub-
graphs from a call network (given a choice of Δt)
and group them into equivalence classes, temporal mo-
tifs [33,36,37]. Then, the numbers of subgraphs in different
classes provide information on temporal processes in the
network – e.g., ubiquitous chains and stars may reflect
transmission and spreading of information. For temporal
motifs, the equivalence classes are best defined on the ba-
sis of the order of calls: a temporal subgraph where A calls
B who calls C should be equivalent to a subgraph where
D calls E who calls F at some different point in time.
Then, class equivalence can be addressed by mapping the
subgraphs to directed, coloured graphs and then applying
graph isomorphism techniques [33].

For mobile call networks, temporal motif analysis of
all 3-event motifs reveals that the most common ones re-
flect burstiness (three calls from A to B, A calling B who
shortly thereafter calls A back, etc.) [33]. When counts of
triangular motifs are analysed (see Fig. 4), it is seen that
the most common ones can have a direct causal explana-
tion (e.g. A calls B and C, and then C calls B), whereas
the least common ones appear to have arisen by random
chance (A calls B, C calls B, A calls C). More detailed re-
sults are obtained when properties of the callers (gender,
age) or links (intra- or inter-community) are taken into
account: nodes in common temporal motifs tend to have
similar properties (temporal homophily), female motifs are
different from male motifs (chains and stars vs. “ping-
pong”), and motifs within communities are more complex
than those between [37].
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3.3 There are daily and weekly rhythms

In addition to the micro-level correlations between timings
of calls discussed above, there are rhythms whose origins
are in the behavioural patterns of individuals but that are
also clearly apparent at the aggregate level. In general,
human activity follows a circadian rhythm, phase-locked
to the day-night cycle, and this is also evident in call ac-
tivity (see, e.g., [15,26]). Here, an interesting application
is to consider the geospatial aspects of circadian rhythms,
and measure call frequencies at different times of the day
at different (tower) locations, which helps to understand
spatiotemporal hotspots and the “rhythms of cities” [38].
Besides daily rhythms, there are also differences between
weekdays – not only in terms of call activity levels, but
also in terms of who is being called [15]: weekends are
different from weekdays.

4 Dynamics of ties

4.1 Mechanisms for tie creation and destruction

Communication events are constituents of human relation-
ships. At longer time scales (typically months), some social
relationships are formed while others decay in time. The
dynamics of ties is not random; several factors moderate
their dynamics. First, there are meaningful social mecha-
nisms behind link dynamics that have to do both with in-
tention of individuals and stochastic elements. Sociological
studies have revealed that many social mechanisms such
as triadic closure (embeddedness), homophily, reciprocity,
geographical proximity, or preferential attachment trig-
ger the process of link formation (and conversely link de-
cay) [39]. For example, it is very likely that a link is formed
between two persons who already share a wealth of com-
mon friends, or who happen to live near one another. In
fact, these well-known mechanisms are behind most of the
friend recommendation algorithms in electronic social net-
works [40]. Second, the amount of social interactions that
humans can handle is constrained: time, socio-economical
status, and/or cognitive capacity do limit the number of
social connections we can maintain in time [41–43]. This
impacts the way how humans distribute communication
between their connections, and also how humans balance
the process of creating new links with that of destroying
old ones.

Mechanisms such as those discussed above should leave
traces in empirical data on the dynamics of ties, in the
shape of deviations from randomness or invariant features,
and many studies in the recent years have attempted to
uncover the salient statistical properties of tie dynamics.
This has only been possible recently, because the typical
time scale of tie dynamics (months) requires longitudi-
nal databases with long periods of observation (years), see
Figure 5. On top of that, while there is an explicit friending
procedure on some communications platforms (e.g. Face-
book), in most situations such as with CDRs tie forma-
tion or decay has to be estimated from the initiation and
termination of activity within the tie. As we have shown

Ω1 Ω2

δtij

a)

b)
c)
d)
e)

Fig. 5. Entanglement between bursty dynamics of ties and
their formation/decay. Timelines of calls within 5 given ties.
i ↔ j. The gray areas show two different observation periods.
If the observation period is very small compared with typical
inter-event time δtij (e.g. Ω2) we might underestimate the ties
present. For longer observation periods Ω1 we need large lon-
gitudinal databases to assess that links are created (e.g. link
b) or destroyed (e.g. link a).

before, communication events are bursty, and a long inac-
tivity period can be mistaken as an absence of the tie. This
could be alleviated by using longer and different observa-
tion windows (typically around 6 months) [44,45], since
short time windows can underestimate the main struc-
tural properties of the network while overestimating tie
dynamics due to the bursty activity within links [15,46].

4.2 Dynamics of tie creation and destruction

In reference [44], Miritello et al. studied the dynamics of
formation and decay of individual links, using a large lon-
gitudinal database (19 months) of mobile phone records.
They found that as other human activities, link forma-
tion/decay events also happen in bursts, e.g. rapid suc-
cessive creation/destruction events of ties are separated
by longer periods of inactivity. Despite this bursty behav-
ior, a strong cutoff in the distribution of inter-event times
was found, suggesting that there is a typical time scale
of tie dynamics: in reference [44] it was observed that on
average around one tie is created/destroyed per month in
human communication. The existence of this time scale
even at the individual level implies that social neighbour-
hoods change linearly in time. However, as mentioned be-
fore, not all links are equally likely to decay. Miritello et
al. [44] found that after 6 months of activity the persis-
tence of social neighborhoods (i.e. the fraction of an indi-
vidual’s links that remain active during those 6 months)
was around 75%, compared to the expected 50% of a null
model in which each individual’s link is equally probable
to disappear. Similar long-term persistence of some links
was found in Burt’s study of 4 years of relationships of
individuals in a financial organization [47].

Information diffusion is also affected by the dynamics
of tie creation/destruction. Several works have found that
in general tie dynamics alone (without considering the
bursty nature of events within each tie) slows down the
propagation of information [48,49] when compared with
null models in which links are usually taken as static. This
is due to the unreal assumption that all links observed in
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A)

B)

Fig. 6. Snapshots of the active links (black) in the neighborhood of two different individuals (red symbols) at 5 equally-spaced
times during 6 months. Inactive links at a given instant are in gray. (A) User behaves according to the explorer strategy,
while (B) follows the keeper strategy. Link width is proportional to the number of calls. Note that both users present a similar
frequency-rank relationship (signature) along the 6 months.

a period of time are capable of transmitting information
throughout that observation time. The high link turnover
observed in human communication suggests that the static
picture of human ties overestimates the connectivity po-
tential of individuals.

4.3 Social strategies and persistent patterns

Even though ties are continually created and destroyed by
individuals at a fast (monthly) pace (their social activity),
it was found in reference [44] than the rates of creation
and destruction are similar for each individual. This im-
plies that the number of active ties at a given instant (the
social capacity of an individual) is almost constant in time.
Different combinations of capacity and activity were found
that define for each individual a dynamical strategy of
communication: while social explorers have large levels of
activity compared to their communication capacity result-
ing in a fast turnover of their neighborhood, social keep-
ers activate/deactivate a smaller number of connections
compared to their capacity and their social neighborhood
is mostly stable (see Fig. 6). Those dynamical communi-
cation strategies depend on the age and gender of indi-
viduals, with both capacity and activity decreasing as a
function of age and being larger for men than women. Fi-
nally it was found that there was a significant assortativity
of social strategies, meaning that social explorers/keepers
tend to gather. These findings render a dynamical picture
of the network with very different rhythms of evolution:
highly static areas of social keepers live together with ex-
tremely volatile groups of social explorers.

Social strategies also have an impact on an individual’s
capacity to access information that is being propagated in
a network. Using similar SI simulations as mentioned pre-
viously, Miritello et al. [44] found that (for a fixed number
of different contacts), social keepers received (i.e., became
infected with) the information faster than social explorers.

This result suggests that the information access benefits
of diverse ties of social explorers are outweighted by their
short time lifespan, resulting in a net delay in access to
information from individuals activating them.

In reference [19], Saramäki et al. have pointed out an-
other feature of individuals’ networks that remains invari-
ant even though there is network turnover – the frequency-
rank relationship of numbers of calls to others, called their
social signature. This means that for a given individual,
the fraction of calls targeted to each acquaintance depends
on how highly they rank in that individual’s network in
terms of call numbers, not their identity. Hence, each indi-
vidual has a characteristic social signature – e.g., placing
a higher fraction of calls to the top 2 acquaintances, or
sharing calls more evenly among everyone. These results
were obtained using 18 months of data for 24 students
who finished high school and went to university or work,
which guaranteed rather high levels of turnover in their
social networks.

Reference [50] looked at egocentric network evolution
from a different point of view – that of new communication
events being associated with existing or newly appearing
ties. They found a universal formula for the probability of
observing new versus existing ties.

5 Community and network evolution

At even longer time scales – years – we find that some
parts of the network or even the network itself change
dramatically. Palla et al. [10] found with CDR and other
data that social groups or communities within networks
have their own dynamics. Concurrent tie formation/decay
events inside and around those communities give rise to
growth, contraction, merging, splitting, and birth or death
of communities. Interestingly, Palla et al. also found that
while larger communities are on average older, they also
have higher rates of change. Thus, large communities
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survive because of a continuous turnover of their mem-
bers. For example, there is a sustained flow of individu-
als joining communities and leaving them. Backstrom et
al. found with data on online and co-authorship networks
that membership is contagious: the probability to join a
community depends on the number of friends previously
in the community [51]. The typical scale of community dy-
namics depends on their size, although there are merging
or splitting events in communities that happen in short
periods of time (two weeks in Ref. [10]), suggesting that
community evolution resembles the punctuated equilib-
rium of biological species.

In order to discuss communication network dynamics
on even larger scales, we have to take a small detour from
the focal topic of call networks and enter the online world.
The recent explosion of online social networks has not only
allowed to study how successful, massive networks grow
in time [52], but also to perform an autopsy on the late
stages of unsuccessful ones [53]. By studying the growth
of networks like LinkedIn, Decilious or Flickr, Leskovec et
al. [52] found that nodes and edges do not arrive linearly
in time. Rather, their growth dynamics accelerates after
the first year, probably due to non-linear social effects in
the adoption contagion or external mass media influence
as Toole et al. found for Twitter [54]. Despite this non-
linear effect, tie dynamics happen mostly following the
well-known processes of preferential attachment, triadic
closure [52] or geographical homophily [54].

In addition to network growth, there is also network
decline, or at least membership turnover. When it comes
to social networks built from CDR data provided by
a single carrier, network turnover is mostly related to
some users eventually deciding to abandon the carrier and
switch to another carrier. This is known as churn. The
rate at which client churn happens is large (at around
2% per month for wireless carriers in the US). This large
turnover of the networks can be analyzed using CDRs:
for example Dasgupta et al. found that as with commu-
nity evolution, the decision to leave the carrier is highly
correlated to the number of friends that have previously
left the carrier [55]. A similar form of social contagion is
behind adoption of products or services in networks: us-
ing 2 years of CDR data, Sundsøy et al. [56] found that
product adoption spreads through the social network of
clients.

The decline of entire networks has been studied with
data on some online social networks that shrunk after
their growth phase. Garcia et al. [53] studied two years
of decline of networks like Friendster to investigate the
causes and mechanisms behind their failure. The found
that as with mobile call networks, individual decisions re-
garding participating in or leaving a community or net-
work are, to a large extent, determined by the number
of one’s friends in the social network and their own en-
gagement with the community/network. Thus, a fraction
of one’s friends leaving the network/community can trig-
ger one to leave, resulting in further cascades of leaving
events and eventually in the network shrinking and finally
ceasing to be. This cascading process accelerates in time

and thus network decay can eventually be really fast. For
example, the Friendster network shrunk from 60 million
users to 10 million users in a year probably because of a
cascading process (but also because of mass media and
competition with other online social networks).

Finally, it is of interest to note that although mobile
call networks are shaped by a number of processes from
dynamics of egocentric networks and communities to cus-
tomer churn, key network-level characteristics such as con-
nectivity and tie strength distributions appear to remain
stationary over long periods of time [15]. That is, the de-
tails of the networks change, but the big picture does not.

6 Future outlook

As seen above, mobile telephone call records have allowed
us to better understand human communication dynam-
ics, and through that, the dynamics of social networks.
Where, then, is this field heading? Interest in mobile tele-
phone data still certainly growing, as seen in the success
of e.g. the Netmob conference on mobile phone data set
analysis (www.netmob.org), and there are plenty of open
issues to be addressed. At the same time, there is an ever-
expanding diversity of communication channels which ne-
cessitates approaches that do not rely on a single source
of data. It may even be that the golden age of CDR-based
research is slowly coming to its end, as the younger gen-
erations adopt new channels of communication even for
voice (Skype, voice over IP). Mobile communication via
such channels is only seen as data traffic and details such
as recipients of messages are not recorded by the mobile
telecom. With a multitude of channels operated by differ-
ent companies, data collection on massive scales becomes
difficult or impossible. This may necessitate collecting re-
search data via smartphone apps from consenting volun-
teers; although the numbers of participants will necessar-
ily be smaller, this may be compensated by an increase in
data quality and coverage of multiple channels.

In the following, we will attempt to identify some
emerging themes and trends.

6.1 Experiments: from big data to deep data

The advantage of using CDRs, extracted from mobile op-
erators’ billing systems, is the sheer size of data, both in
terms of numbers of users and in terms of call events.
However, at the same time, such data is necessarily shal-
low [57]. Because of privacy reasons, information on phone
users is very limited (e.g. age, gender) or not available
at all. Furthermore, mobile telephone calls represent only
one channel in an ever-expanding multitude of electronic
communication channels. Yet data originating in mobile
telephone operator billing system does not contain infor-
mation on any other channels, with the exception of text
messages (whose use has already declined in the younger
generations).

There is only one practical way of sorting out the above
difficulties, and that is collecting research data already at

http://www.epj.org
www.netmob.org
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the user end, for example with a smartphone app designed
for the purpose. As mentioned above, this may also be the
only viable option in the long term because of the increas-
ing diversity of communication channels results in a lack
of coverage by CDRs. Then, instead of using anonymised
large-scale data, one needs to go for volunteer users. In
other words, the data collection phase becomes its own
project – an experiment designed by researchers. This nec-
essarily limits the number of studied individuals, as it is
hard to scale up any experiment to the level of entire na-
tions that CDRs cover. Participant retention is another
problem, especially for longitudinal experiments with in-
tended time spans of years instead of months. In the earli-
est experiments that combine call records with other types
of data (such as GPS positioning and Bluetooth proxim-
ity) [58–61], the numbers of participants have been of the
order of ∼ 100. An effort that is larger by one decade – the
Copenhagen Networks Study with N ∼ 1000 – is currently
approaching the end of its data collection phase [57].

App-based collection of data allows recording a num-
ber of data streams from GPS positioning to usage of
other apps and communication channels. On top of that,
it is possible to apply the traditional method of social sci-
ences: actually ask the users what they are doing, why,
and how do they feel about it, via pop-up surveys. These,
together with psychological profiling (e.g. standard ques-
tionnaires for personality traits, see [57]) provides a far
more detailed picture on the users than what can be ob-
tained from mobile telephone operators. Additionally, sur-
veys can provide valuable information on the nature and
closeness of the social ties captured by electronic commu-
nication, since different types of ties play different roles
in network structure (see, e.g., [62]). Given data sets with
temporal information, ground truth, and enough statisti-
cal power, it might even be possible to associate features
of call time series with the nature of social ties, something
that could then be applied to unlock features of larger
data sets.

6.2 From aggregates to individuals

In the early days of social network analysis with large
databases, focusing on structural properties of networks
and disregarding details such as possible differences be-
tween individuals was the norm (except perhaps for is-
sues such as broad connectivity distributions of individu-
als). Likewise, the social network modelling paradigm has
mainly been that of social atoms: in a typical agent-based
model, each node follows exactly the same rules as every-
one else, and the aim is to see whether such minimalis-
tic assumptions can already explain empirically observed
features. However, it is evident that much important in-
formation is lost when disregarding individual differences
and relying on system-level summary statistics on network
structure and dynamics. In the worst case, this can lead
to so-called ecological fallacy [63], where statistical depen-
dencies seen at the system level are falsely attributed to
the individuals comprising the system too. The opposite
is also possible: much interesting and important variation

may be hidden behind flat system-level averages. It should
be noted that statistical physicists are especially vulner-
able to this problem, being used to system-level statis-
tics describing the behaviour of large numbers of identical
elements.

Moving beyond the aggregate level requires more de-
tailed information than knowledge of network structure
alone (which is probably why so many studies have re-
mained there). In addition to harder-to-collect experimen-
tal data (see above), when it comes to CDRs, such infor-
mation can be available in the time domain. Even when
the source data contains no direct information on each
individual’s attributes, their behavioural patterns mani-
fested in temporal event sequences and link dynamics may
allow distinguishing between different types of individu-
als, or inferring some personal traits and features. The
discussion on social strategies (keeper, explorer) above is
a good example of this. Known attributes of individuals
such as gender and age have also been seen to affect their
temporal communication patterns in reference [37]. When
call data collected in experiments is augmented with ex-
tra information such as surveys and psychological pro-
filing, an entirely new set of possibilities opens up. As
an example, correlations beetween extraversion and num-
ber of calls contacts have been found in the analysis of
CDRs [57,64,65], similarly to Facebook friends [66].

In addition to data analysis, we expect that the next
generation of improved social network models will build
on diversity in individual behaviour instead of identical
agents.

6.3 Data sharing

Perhaps the biggest problematic issue related to mobile
call datasets is that it is typically impossible to publicly
share data. Most results on mobile call networks are out-
puts of a similar pipeline: a mobile telecom operator agrees
to provide anonymised data to a group of researchers un-
der strict non-disclosure agreements and under the condi-
tion that any results to be published must be scrutinised
by the company first to avoid publishing commercial se-
crets. Anonymisation is typically achieved simply by re-
placing all phone numbers with surrogate keys. Since the
data cannot be shared, one of the main principles of the
scientific method, reproducibility of results, is violated:
the only way of checking someone’s results is to succeed
in obtaining similar data from a telecom, and even then
the results may differ because of e.g. sampling or cultural
issues.

The problem with releasing detailed call data with
time stamps is that it is very difficult to guarantee that
users cannot be re-identified even in anonymized data.
As an example, it is easy to identify oneself by match-
ing the time stamps found in the call log of one’s own
mobile phone with time stamps in CDR data; this also
reveals everyone who has been called. In fact, structural
network information without time stamps may already be
enough, see [67]. Inclusion of tower location data brings

http://www.epj.org
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even more problems [68], since individuals can be identi-
fied from their frequented locations [69]. However, if the
data has been collected experimentally, with consenting
volunteers, it may be possible to release at least parts of
it, depending on a number of issues such as agreements
with participants and the level of anonymity in the re-
leased data.

Because of the above problems, there are very few pub-
licly shared data sets – the MIT reality mining data in-
cludes call logs [58], Wu et al. [70] comes with three sets
of data on anonymised, time-stamped text messages, and
Saramäki et al. [19] provides three sets of egocentric net-
works aggregated over 6 months each. A notable exception
in data sharing is the different data challenges that have
taken place in the last years, such as the Nokia Mobile
Data Challenge by Nokia [71], the two D4D Challenges by
Orange [72] or the Telecom Italia Big Data Challenge [73].
In these challenges, anonymised samples of call and mo-
bility data are made available for researchers for limited
time upon request. The aim is to use the data for research
projects that e.g. have a development dimension like in the
D4D challenges (Ivory Coast in 2013, Senegal in 2014) or
address applicability in sectors like energy, weather, public
and private transport, and social network studies. Here,
privacy issues have been addressed by a number of tech-
niques: small samples, aggregation and coarse-graining,
and added noise. It is worth noting that although the data
is available to any researcher who wishes to participate in
the competition, it still comes with a non-disclosure agree-
ment and its use is limited to the competition. A remark-
able exception is the data by Telecom Italia, who have
opened their challenge data for reuse [74].

Would it then be possible at all to share mobile call
data, without aggregating out too many details and while
still preserving privacy? There are no readily available so-
lutions to this problem. The concept of homomorphic en-
cryption (see, e.g., [75]) has been discussed in contexts
such as cloud security. In this scheme, a limited set of
analysis operations can be conducted on data that is al-
ready encrypted. However, the viability of such a scheme
for CDR analysis is uncertain. Another possibility might
be not to release the data itself, but let researchers ac-
cess to it through an Application Programming Interface
(API) that allows using highest-resolution data in com-
putations, but only provides aggregated results, along the
lines of openPDS [76].
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K. Kaski, J. Kertész, A.L. Barabási, Proc. Natl. Acad. Sci.
104, 7332 (2007)

4. N. Eagle, A. Pentland, D. Lazer, Proc. Natl. Acad. Sci.
106, 15274 (2009)

5. R. Lambiotte, V.D. Blondel, C. de Kerchove, E. Huens,
C. Prieur, Z. Smoreda, P.V. Dooren, Physica A 387, 5317
(2008)

6. G. Krings, F. Calabrese, C. Ratti, V.D. Blondel, J. Stat.
Mech. Theor. Exp. 2009, L07003 (2009)

7. X. Lu, M. Bengtsson, P. Holme, Proc. Natl. Acad. Sci.
(USA) 108, 11472 (2012)

8. N. Eagle, M. Macy, R. Claxton, Science 328, 1029 (2010)
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