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Abstract. The low energy continuum limit of graphene is effectively known to be modeled using the Dirac
equation in (2 + 1) dimensions. We consider the possibility of using a modulated high frequency periodic
driving of a two-dimensional system (optical lattice) to simulate properties of rippled graphene. We suggest
that the Dirac Hamiltonian in a curved background space can also be effectively simulated by a suitable
driving scheme in an optical lattice. The time dependent system yields, in the approximate limit of high
frequency pulsing, an effective time independent Hamiltonian that governs the time evolution, except for
an initial and a final kick. We use a specific form of 4-phase pulsed forcing with suitably tuned choice of
modulating operators to mimic the effects of curvature. The extent of curvature is found to be directly
related to ω−1 the time period of the driving field at the leading order. We apply the method to engineer
the effects of curved background space. We find that the imprint of curvilinear geometry modifies the
electronic properties, such as LDOS, significantly. We suggest that this method shall be useful in studying
the response of various properties of such systems to non-trivial geometry without requiring any actual
physical deformations.

1 Introduction

Quantum systems subjected to high-frequency periodic
driving have become a prominent feature of quantum sim-
ulation studies [1,2]. These studies are mostly aimed at
modelling various unique condensed-matter systems [3,4].
Floquet theory and its applications have been exten-
sively studied [5]. Field induced driving [6], or that
generated through mechanical straining, for instance, in
graphene [7–11] have demonstrated their ability to cre-
ate novel gauge structures and modify the energy spectra.
Such driving schemes have hence become increasingly pop-
ular in cold atom and ion-trap systems as a means of im-
plementing effective potentials that could simulate mag-
netic fields or spin-orbit couplings [12–19]. The theoretical
formalism underlying these driven quantum systems re-
lies on a time dependent forcing that synthesizes an effec-
tive approximate time independent Hamiltonian [20–27].
A recent trend in these investigations has been inclined
towards looking at a variety of driving schemes to explore
potentially interesting Hamiltonians [28].

In much of the last decade two areas have witnessed
rapid progress, namely, the physics of graphene with its
applications [29] and ultra cold atoms in optical lat-
tices [30]. Interest in the former is driven by the real-
ization of a perfectly flat two-dimensional (2D) system
and the unique physics observed in the material due to
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its relativistic dispersion relation [31–33]. Optical lattices,
on the other hand, has offered an indispensable simula-
tor for realizing many-body condensed matter phenomena
and noting their response to a highly controllable varia-
tion of system parameters. This has motivated a signifi-
cant advancement in the efforts to simulate graphene like
systems in optical lattice [34–43]. Graphene systems have
been studied in the presence of time dependent poten-
tials [44,45]. Further graphene is noted to show exotic
properties, either under mechanical strain, curvature or
possessing defects such as dislocations [7–11,46–55]. These
studies often use a continuum model of Dirac fermions
in curved (2 + 1) dimensions in the limit of low energy
excitations. This has also been investigated in the cold
atom/optical lattice setup with the objective of studying
relativistic electrodynamics in the presence of gravity [56].

The experimental realization of such systems has pre-
sented technical difficulties arising from the spin-like and
position dependent nature of the nearest-neighbor hop-
ping amplitude in their Fermi-Hubbard Hamiltonian. The
essential requirement is the coupling of an artificial non-
abelian gauge field to the ultra cold fermionic atoms in
the optical lattice (near half-filling) giving rise to the
appropriate effective dynamics [57–65].

A key ingredient of all such simulations involves the
generation of artificial gauge fields in optical lattices
through periodic driving or “shaking” [17,66–68]. We pro-
pose the use of a certain driving scheme to obtain an
effective curved graphene model in the optical lattice
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setup. The key distinction of our proposed scheme from
similar works [56] is our use of pulse sequences with suit-
ably chosen modulating operators, as described in refer-
ence [28], to generate the effects of smooth driving. This is
suggested as an alternate scheme to circumvent difficulties
arising from the complicated form of the effective tun-
neling parameter in conventional treatments. An added
advantage of this method is the easy correspondence af-
forded by it between the continuum and the lattice using
a suitable map relating the operators in the two pictures.

In this work, we outline a scheme for the generation of
an approximate effective Hamiltonian using periodic time
dependent forcing on a fermionic 2D optical lattice hav-
ing the Bloch band topology of flat graphene such that
the resulting static effective system mimics the features of
a curved background. To compare with the Dirac equa-
tion in curved (2 + 1) dimensional background we con-
sider a metric with a conformally flat spatial part. The
Dirac equation in this curved background is cast in a
Hamiltonian form to allow easy comparison with the lat-
tice Hamiltonian in the continuum limit. The effects of
background curvature are noted. We have found an ef-
fective approximate time-independent Hamiltonian which
is obtained from a specific high frequency time-periodic
driving of the flat space Dirac Hamiltonian. This effec-
tive Hamiltonian is found to be identical to the Dirac
Hamiltonian in curved space at the leading order.

We also note the direct correspondence between the
nature and the periodicity of the driving to the form and
the extent of curvature. The modification of the electronic
properties, specifically Local Density of States (LDOS) is
studied in low energy regimes near the Fermi points.

2 Formalism

2.1 Massless Dirac equation in curved (2 + 1) D space

We consider the effects of curvature of the background
space on the massless Dirac equation. The curved space
Dirac Hamiltonian is believed to govern the quasi-particle
(i.e., the massless Dirac fermion) dynamics in the contin-
uum limit of the low energy approximation for graphene
sheets with curvature. In the subsequent sections, we shall
elaborate upon our intent to replicate such systems in the
framework of optical lattice simulation.

The Dirac equation in (2 + 1) dimensional space-time
has been studied in various contexts and has a well defined
formalism [69–77]. This section provides a brief overview
of this as relevant to our work. We consider a (2 + 1)
dimensional space-time as the backdrop for our analysis.
We choose a space-time metric of the form

ds2 = dt2 − e−2Λ(x,y)
(
dx2 + dy2

)
, (1)

where t represents the time coordinate, x and y
are the spatial isothermal Cartesian coordinates,
and e−2Λ(x,y) denotes the conformal factor. We note
here that the two-dimensional spatial part of this met-
ric diag (1,−e−2Λ(x,y),−e−2Λ(x,y)) is completely general

in representing two-dimensional curved surfaces. This
metric has been used in the context of studying Dirac
equation coupled to curved space-time [78] with a distri-
bution of defects, for instance, in the case of corrugated
graphene sheets [7–9].

The Dirac equation in curved space-time takes the
form

iγμ(x) (∂μ + Γμ(x))ψ = 0. (2)

The spin connection term, Γμ(x), is given by reference [78]

Γμ(x) = gλα

(
ei

ν,μE
α
i − Γα

νμ

)
sλν + aμI (3)

where ei
ν and Eα

i denote the usual vielbeins and their
inverses respectively, Γα

νμ are the Christoffel connection
coefficients and sλν are the generators of spinor transfor-
mation in curved space-time. This expression illustrates
the indeterminacy of the connection term to upto a con-
stant aμ. Hence Γμ has an arbitrary trace [78]. This of-
fers a gauge freedom which can be exploited depending on
the nature of the problem. We take the standard choice
for Γμ as:

Γμ(x) =
1
2
gλα

(
ei

ν,μE
α
i − Γα

νμ

)
sλν (4)

with,

sλν(x) =
1
2

[
γλ(x), γν(x)

]
. (5)

The γ matrices with curved space-time indices are re-
lated to the usual Dirac matrices in flat space by γμ(x) =
Eμ

i (x)γi. We choose the following representation using the
Pauli matrices for the γis

γ0 = σz γ1 = iσy γ2 = −iσx. (6)

In our choice of representation, σz is diagonal and σy is
complex.

The spin connection components, for our metric (see
Eq. (1)), are given as:

Γ1(x) =
i

2
∂Λ(x, y)
∂y

σz, Γ2(x) = − i

2
∂Λ(x, y)
∂x

σz . (7)

The massless Dirac equation in curved (2+1) space-time,
can hence be written as:
[
iσz ∂

∂t
− eΛ(x,y)

(
σy ∂

∂x
− σx ∂

∂y

)

+
eΛ(x,y)

2

(
∂Λ(x, y)
∂y

σx − ∂Λ(x, y)
∂x

σy

)]
ψ = 0, (8)

where we have used equations (2) and (4). This equation
can be recast in an explicitly Hamiltonian form by break-
ing the manifestly covariant form as:

i
∂ψ

∂t
= eΛ(x,y)

[
−iσj∂j− i

2

(
∂Λ(x, y)
∂y

σy +
∂Λ(x, y)
∂x

σx

)]
ψ.

(9)
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The entire operator acting on ψ in the RHS of the above
equation may be interpreted as the Dirac Hamiltonian in
curved space. This Hamiltonian is required to be synthe-
sized using the driven optical lattice. As will be shown
later it is possible to formulate a driving scheme which
does exactly this. In the following section we discuss
a procedure for obtaining an effective time-independent
Hamiltonian for periodically driven systems. This shall
find appropriate implementation in optical lattices.

2.2 Periodic pulsing and effective Hamiltonians

In the study of quantum systems having periodic time
dependent Hamiltonians [22,23], a special category is de-
voted to the class of systems where the system is subjected
to high frequency periodic forcing [20]. The theoretical
treatment of such systems has its roots in the study of
similar classical systems [79,80]. The literature suggests
various routes to arrive at an effective time-independent
Hamiltonian [21,24–26]. The traditional practice of using
the Cambell-Baker-Hausdorff (CBH) expansion or Trotter
expansion to study Floquet systems has certain inherent
defects [26,27]. A recent approach [28], inspired by refer-
ence [26], forms the basis of our formalism. It uses the idea
of engineering effective Hamiltonians by applying care-
fully selected periodic driving schemes to quantum sys-
tems, geared towards generating desired effective static
systems.

To start with, we consider a time-periodic
Hamiltonian H(t) that can be written as:

H(t) = H0 + V (t), (10)

where H0 is time independent and V (t) is the periodic
time dependent part such that V (t + T ) = V (t). The pe-
riodic time-dependent operator V (t) can be expanded in
a Fourier series as:

V (t) = V0 +
∑

1≤n<∞
V̂ne

inωt +
∑

1≤n<∞
V̂−ne

−inωt. (11)

In order to obtain the effective time independent
Hamiltonian one writes the time evolution operator as:

U(ti, tf ) = e−iF̂ (tf )e−iĤeff (tf−ti)eiF̂ (ti), (12)

where, one introduces a time dependent Hermitian op-
erator F̂ . The idea is to push all the time dependence
to the initial and final “kick” terms and render the
main time evolution to be dictated by a time indepen-
dent Hamiltonian. The systematic formalism (see Ap-
pendix) yields the following expression for the effective
Hamiltonian [28]

Heff = H0 + V0 +
1
ω

∞∑

n=1

1
n

[
V̂n, V̂−n

]

+
1

2ω2

∞∑

n=1

1
n2

([[
V̂n, H0

]
, V̂−n

]
+ h.c.

)
+ O(ω−3).

(13)

The correction terms that appear in the effective
Hamiltonian depend on the commutator of the Fourier
coefficients V̂n with each other and with the unperturbed
Hamiltonian H0. It is worth noting, that, for potentials
which have time-reversal symmetry (V (t) = V (−t)) equa-
tion (11) imposes restrictions on the coefficients so that
the commutator [V̂n, V̂−n] vanishes. For such potentials
the leading order correction is O(ω−2). The appearance of
the O(ω−1) term with a non-zero coefficient is a feature
of potentials with dependence on momentum operators in
addition to position and time. Time reversal symmetry
is broken in these cases. Several possible choices for such
potentials are worked out in reference [28]. Our choice of
driving potential, discussed in the latter portion of this
work, falls into this category. This serves as a helpful re-
minder of the occasional deviations from the intuitively
expected O(ω−2) leading order correction in the effective
Hamiltonian, which is expected for potentials with time
reversal symmetry.

We shall now focus on a specific kind of forcing poten-
tial. The driving potential V (t) shall be considered to be
a sequence of pulses that repeat periodically. The choice
of the number of phases in a given pulse sequence dic-
tates the form of the effective Hamiltonian. This offers a
wide variety of possibilities up to a given order ω−1 in the
perturbation expansion.

Let us consider a generalN -phase pulse sequence, with
period T , of the form

V (t) =
N∑

r=1

fr(t)Vr (14)

where fr denotes a square profile such that

fr(t) =

{
1, (r − 1)T/N ≤ t ≤ rT/N,

0, elsewhere.
(15)

Here, Vr are arbitrary operators that are free to be chosen
as per ones requirement. Each phase lasts for a duration
of T/N . We also impose the condition

∑N
r=1 Vr = 0.

The time-dependent Hamiltonian for such a choice of
driving is then

H(t) = H0 +
N∑

r=1

fr(t)Vr . (16)

Using the Fourier series expansion this can be written as:

H(t) = H0 +
∑

n�=0

V̂ne
inωt, (17)

where

V̂n =
1

2πi

N∑

r=1

1
n
e−2πinr/N (e2πin/N − 1)Vr. (18)

It is possible to use equation (13) at this stage to ob-
tain a generic expression for the time-independent effec-
tive Hamiltonian for the kind of driving given in equa-
tion (14) (Eq. (30) in Ref. [28]).
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Given the flexibility of choosing the number of phases
and also the modulating operators, a wide variety of ef-
fective Hamiltonians can be generated. The next section
deals with one such choice that enables us to design the
required gauge field to simulate the physics of curved
graphene in optical lattices. The usefulness of such a puls-
ing scheme is demonstrated by showing its equivalence to
an optical lattice shaken/modulated by a smooth driving.

The modulation scheme used in standard optical lat-
tices does not consist of such pulsing and instead uses
smooth driving. The effective Hamiltonian obtained for
smoothly modulated optical lattices carries an imprint of
the modulation frequency through the renormalized hop-
ping term (which is a function of ω). On Taylor expanding
the hopping parameter as a series in ω−1, this effective
Hamiltonian matches with the one obtained by a pulsing
scheme at the leading orders [28].

2.3 Simulating rippled graphene: optical lattice scheme

As mentioned previously, the use of fermionic optical lat-
tices to simulate Dirac cones and massless Dirac fermions
is well established. In such a system the application of
a time-dependent sinusoidal modulation can be used to
obtain novel gauge effects in an artificial time-averaged
manner. The possibility of doing this using the method
discussed in the previous section is elaborated here.

Among the wide range of choices that do exist, our
problem lends itself rather neatly to a 4-phase pulse se-
quence with modulation of the Hamiltonian given by:

P4 : {H0 +A,H0 +B,H0 −A,H0 −B}. (19)

This compares to equation (14) for N = 4 with V1 =
−V3 = A and V2 = −V4 = B, where A and B are suitable
operators. As discussed in the last section, this is equiva-
lent to a smooth driving of the form

V (t) = A cos(ωt) +B sin(ωt). (20)

This choice of the time-dependent potential yields the
following effective Hamiltonian [28]

Heff = H0 +
i

2ω
[A,B]

1
4ω2

([[A,H0], A] + [[B,H0], B])

+ O(1/ω3). (21)

It is significant in our context to note that the expression
for Heff has both first order and second order terms in ω
with the appropriate commutator brackets. The freedom
in the choice of A and B allows us to engineer the desired
effective Hamiltonian.

The periodic driving scheme has a small parame-
ter ω−1, the time-period of forcing. It is our contention
that it is possible to use the formalism of generating effec-
tive approximate Hamiltonians, through a choice of suit-
able operators A and B as mentioned in equation (19),
to reproduce a Dirac Hamiltonian in curved space. This
would involve choosing an appropriate pulsing scheme.

We note that the low energy limit of a continuum ap-
proximation of graphene, as simulated in the lattice, has
the Hamiltonian of the form [29]

HG = −ivFσ
j∂j (22)

in units of �, where vF is the Fermi velocity and ∂j =
(∂x, ∂y) is the gradient operator in 2-dimensions. We shall
subsequently work in units where vF = 1. This motivates
us to consider the primary Hamiltonian in our analysis as
−iσj∂j . The discussion here solely employs the continuum
formalism for the operators and the mapping to the second
quantized forms for the operators and the Hamiltonians
are only introduced later in the section on results and
discussion.

Let us consider a driving scheme with H0 = −iσj∂j ,
the Dirac Hamiltonian in flat space and choose the oper-
ators A and B of the form

A = σjαj B = σkβk (23)

where, αj = [i∂y,−i∂x, 0] and βk = [0, 0,−f(x, y)]. With
this choice, equation (21) yields an approximate effective
Hamiltonian Heff up to order ω−1 given by:

Heff =
1
2

[
−i

(
1 +

f(x, y)
ω

)
σj∂j

]

− 1
2

[
iσj∂j

(
1 +

f(x, y)
ω

)]
. (24)

For large ω this is a good approximation. The term
of O(ω−2) is significantly suppressed and manifests as
non-trivial couplings and maybe ignored for our present
analysis. With a substitution

eΛ(x,y) =
(

1 +
f(x, y)
ω

)

we have

Heff =
1
2
[−ieΛ(x,y)σj∂j − iσj∂j e

Λ(x,y)] (25)

such that the entire expression is in terms of Λ(x, y) in-
stead of f(x, y). The Hamiltonian in equation (25) can be
further simplified and explicitly written as follows

Heff =eΛ(x,y)

[
−iσj∂j − i

2

(
∂Λ(x, y)
∂y

σy +
∂Λ(x, y)
∂x

σx

)]
.

(26)
We seek to map this effective time-independent
Hamiltonian that is obtained from the original time-
dependent Hamiltonian to the Dirac Hamiltonian in
curved space. The function Λ(x, y) appearing here is ex-
pected to be mapped to the metric in some fashion in the
equivalent curved space description.

Comparing equations (26) and (9) we establish the cor-
respondence between the periodically driven effective sys-
tem and a curved space description. The function Λ(x, y)
that depends on the periodic driving scheme is now seen to
appear in the conformal factor of the metric in the curved
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space picture. A quantity of geometrical interest describ-
ing 2D curved surface is the Gauss curvature K(x, y)
given by:

K(x, y) = e2Λ∇2(Λ). (27)

This scalar function has complete information about the
curved 2D surface. Since Λ = ln(1 + f(x,y)

ω ) depends on
the driving scheme f and driving frequency ω, the cur-
vature shall depend on these directly. It is hence possible
to reproduce the effects of curvature (K �= 0) by suit-
ably manipulating the driving scheme. This completes the
mapping between the two equivalent pictures.

In order to confirm that our model suitably mimics the
properties of curved graphene, it is required that some
physical quantity associated with it be computed and
obtained experimentally. We regard the local density of
states (LDOS) to be a suitable candidate. In the follow-
ing we briefly recapitulate its significance and prescribe a
method for determining it theoretically.

The LDOS is a quantity of interest in the study of
electronic and transport properties of various condensed
matter systems. It offers information regarding the spa-
tial variation in the density of states over a region, arising
out of local disturbances, that can be verified experimen-
tally using scanning tunneling microscopy (STM) tech-
niques. It is therefore a physically relevant parameter for
our study. Our analysis suggests that the electronic prop-
erties for a periodically driven graphene like optical lat-
tice system, describable by a Dirac Hamiltonian, shall be
the same as one expects for the same system in a curved
background without any periodic forcing. To compute the
LDOS [81] one first needs to calculate the Green’s function
for the system, for the case of non-interacting electrons,
as follows.

G(z, r, r′) =
∑

n

ψn(r)ψ∗
n(r′)

(z − En)
(28)

where, z denotes a complex energy variable, ψn are en-
ergy eigenstates in coordinate representation, En repre-
sents the energy eigenspectrum and the sum ranges over
the n eigenvalues of energy. The expression for the LDOS
is given as:

ρ(ε, r) = − 1
π

Im
∑

n

|ψ(r)|2
(ε+ iδ − En)

(29)

which may be written as

LDOS = ρ(ε, r) = − 1
π

Im [G(ε+ iδ, r, r′)] . (30)

We shall compute the LDOS numerically using the spec-
trum of the Hamiltonian in equation (26) and compare it
with the flat space case where Λ = 0.

3 Results and discussion

The study of alterations to the electronic properties of
graphene sheets as a result of deformation, curvature, de-
fects or impurities focuses chiefly on the modifications

to the LDOS or the appearance of a gap at the Fermi
points [10,33,47,48,82–87]. These works discuss the pos-
sibility of opening a band gap in graphene at the Dirac
point, which is known to be topologically protected by
inversion and time reversal symmetries [88–90]. The pres-
ence of perturbations that respects these discrete sym-
metries can only move the Fermi points but not create a
gap [91]. A hybridization of the Fermi points with opposite
topological charge (winding number) allows a subsequent
opening of gap [92].

In our present analysis we attempt to examine the ef-
fect on the LDOS for graphene-like optical lattice under
a periodic driving. The approach has similar motivations
to earlier studies on LDOS in rippled graphene [47,48].
The principal difference being that our system does not
involve taking a graphene sheet with any curvature or de-
fects but imparting curved-graphene properties to an op-
tical lattice via pulsing. The choice of the driving scheme
function f(x, y) that maps to the conformal factor in the
metric is taken as:

f(x, y) = x2 + y2. (31)

This choice of the driving scheme is used to compute the
curvature according to equation (27) and yields a con-
stant Gaussian curvatureK(x, y) = 4

ω . Thus the curvature
turns out to be inversely proportional to the driving fre-
quency ω. Hence, with our high frequency driving scheme
(high frequency is a necessary condition required for the
convergence of the perturbation series in Eq. (A.10)) we
are able to model a small positive constant curvature.

The deep significance behind the similarity between
the Dirac Hamiltonian in curved space and the effective
time independent Hamiltonian needs to be addressed. This
can be understood by acknowledging that the effects of
both curvature and driving find expression through the
unifying formalism of effective gauge fields. In the case
of a rippled graphene sheet [47,48,51–54] it has been well
established that the effect of curvature manifests in the
curved space Dirac equation through an artificial mag-
netic vector potential giving rise to a pseudo-magnetic
field. This is a reinterpretation of the contribution com-
ing from the spin connection and the curved space gamma
matrices, which characterize the changes to the ordinary
flat space derivatives (giving the correct form of the co-
variant derivatives in curved space). The modification gets
carried over into the lattice picture through a phase factor
that modulates the hopping term (Peierls phase). This is
the usual way to couple a gauge field to a tight binding
Hamiltonian.

It is also a matter of fact that periodic driving can
indeed replicate gauge structures [28]. A landmark ap-
proach [17] maybe used to simulate complex valued hop-
ping parameters with a tunable value for the Peierls phase
in the effective time independent lattice Hamiltonian.
Thus a scheme for simulating a vector potential that
amounts to a finite pseudo-magnetic flux through a 2D
lattice is available. Mathematically, the slow part of the
eigen states of the Floquet Hamiltonian −i� ∂

∂t +H are the
object of study in the time independent picture. The use

http://www.epj.org


Page 6 of 10 Eur. Phys. J. B (2015) 88: 231

of a unitary gauge transformation eiF (t) (see Appendix) to
map the states of the system to a projective space where
the evolution of the system is governed by a time inde-
pendent Heff , essentially involves a transformation of the
time evolution operator in a manner similar to the trans-
formation of the momentum operator (i.e. the operator for
translation) in the presence of a minimally coupled gauge
field. Equation (A.7) is very similar to a gauge transforma-
tion. Thus, from a differential geometric point of view, the
periodic driving defines its own connection due to which
arises a holonomy in the line bundle over the projective
space of rays of the Hilbert space [93]. In this manner a
gauge invariant time dependent phase appears as correc-
tions to the quasi-energies of the system over time peri-
ods large compared to that of the high frequency periodic
driving.

It is possible to write down the operators A and B of
the driving in the conventional second quantized notation.
To do so we adopt a convention in which the fermionic
optical lattice Hamiltonian reads

H0 = J
∑

〈k,j〉
Ψ †

k+1,jσ
xΨk,j + Ψ †

k,j+1σ
yΨk,j

− h.c.+Hon-site (32)

where, J is the plain hopping parameter, a the lattice
spacing, Ψ†

k,j = (â†k,j , b̂
†
k,j) creates a particle at the site

(ka, ja) in some spin state. The operators âk,j and b̂k,j

stand for the two triangular sub-lattices of the optical lat-
tice. The operators A and B in this convention, for the
choice of f(x, y) in equation (31), becomes

A = − i

2a

∑

〈k,j〉
Ψ †

k,j+1σ
xΨk,j − Ψ †

k+1,jσ
yΨk,j − h.c.

B = −σz a
2

2

∑

〈k,j〉
k2Ψ †

k+1,jσ
xΨk,j + j2Ψ †

k,j+1σ
yΨk,j + h.c.

(33)

In the above expressions, we make use of the following
map between continuum operators and those on the lattice
as [28]

− iσx∂x ≡ i

2a

∑

〈k,j〉
Ψ †

k+1,jσ
yΨk,j − h.c.

− iσy∂y ≡ i

2a

∑

〈k,j〉
Ψ †

k,j+1σ
xΨk,j − h.c. (34)

and

x2 + y2 ≡ a2

2

∑

〈k,j〉
k2Ψ †

k+1,jσ
xΨk,j

+ j2Ψ †
k,j+1σ

yΨk,j + h.c. (35)

The mapping between the continuum operators and
their lattice counterparts enables the actual possibility of
simulation of the Hamiltonian on the lattice.

The issue of experimentally realizing the system as de-
scribed above is contingent on successful implementation
of the lattice operators A and B, followed by a design of
the driving which would ultimately yield the desired effec-
tive Hamiltonian in the time independent approximation.
This has to be approached in an incremental fashion. The
operators A and B are themselves constructed from op-
erators for position and momentum in a 2D, fermionic
optical lattice. Experimental realization of these opera-
tors uses pulsed directional hoppings i.e. time dependent
modulation of tunneling [12] by varying the laser inten-
sity in a certain direction. However, in our case the 2 × 2
character of the Hamiltonian is also to be accounted for.
This requires a periodic drive capable of imparting such
features.

A scheme, recently suggested, in an effort to simulate
spin-orbit coupling (SOC) through periodically driving a
tight-binding lattice of neutral ultra-cold atoms [94] may
enable this. This uses a spin-dependent periodic driving
force, achieved through a time periodic magnetic field cou-
pled to opposite spin states, to generate complex valued
tunneling parameters. There is an additional radio fre-
quency coupling between adjacent spin states. The cumu-
lative effect when viewed from the perspective of a time
independent effective Hamiltonian is that of an optical lat-
tice with a spin-dependent renormalization of the hopping
term. This technique is accompanied with the added ad-
vantage of generating a site dependent phase associated
with the terms of the Hamiltonian which are associated
with tunneling between adjacent sites (this being an es-
sential feature of our Hamiltonian). It must be noted here
that the work [94] deals with a 1D lattice, whereas we
require the scheme to be adapted for the 2D case.

The procedure, upto this point, manages to realize the
operators A and B in a time averaged manner. In or-
der to further set up our curved space Hamiltonian we
have to resort to alternating between the two operators
in the manner of the 4-phase pulse sequence discussed in
Section 2.3. Thus another layer of time averaging will be
required to arrive at our desired Hamiltonian. The puls-
ing may be devised such that during the phase when A
is supposed to act we use a combination of laser tuned
tunneling and radio frequency tuning and for B just the
SOC modelling technique be used. The need to work with
multiple time scales is apparent here and one is required
to average through these to get at the desired Hamiltonian
over a prolonged duration. The issues related to cooling
and the spontaneous emission of photons are claimed to
be partially overcome in the SOC modelling technique dis-
cussed above as compared to near-resonant Raman laser
coupling schemes. However, periodic driving does create
excitations in the system which may lead to spontaneous
emission. This is influenced by the driving frequency, lat-
tice modulation and interactions between particles (see
Refs. in [94]). The experimental viability of sustaining
multiple time scales in the system to obtain the desired
dynamics over a reasonable duration of time without un-
due heating and excitations has to be further looked into
and is beyond the scope of the present work.
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Fig. 1. Correction to the LDOS given by ρ
ρo

− 1 with ρ be-
ing the LDOS for pulsed graphene and ρo that for ordinary
graphene.

It also remains to be seen how the approach suggested
above compares with the purely spatial techniques elab-
orated in reference [56]. One of these is to use the mag-
netic field induced Zeeman splitting of the hyperfine levels
and design the system as a bichromatic spin-independent
super-lattice. The fermi gas of atoms used can be made
to populate various sublevels and transition between them
via laser induced tunneling. The spatially dependent na-
ture of the tunneling is ensured by making the Raman
laser detunings hence Zeeman splittings spatially depen-
dent. This method however, besides its inherent technical
complexity, has to contend with issues of stability and the
lifetime of atomic excitations owing to spontaneous emis-
sion of photons. An alternative method, also put forward
in the same work, considers using the waist spread of laser
beams to generate tunneling terms. Here the variation of
the laser intensity over the dimensions of the lattice cre-
ated spatially dependent hopping terms. The drawback of
this method is the restriction to only a Gaussian variation
of the tunneling operators and no control over this feature
can be exerted. This significantly limits the freedom of re-
alizing various metrics for the curved space Hamiltonian.

We investigate the nature of the LDOS for the
Hamiltonian in equation (26) and look for the imprint of
spatial curvature in its behavior. The LDOS computations
are performed for the choice of the driving scheme given in
equation (31). The expressions in equations (28) and (30)
are evaluated numerically to estimate the LDOS. Figure 1
shows the modification to the LDOS for our system over
that of normal graphene in flat space. The figure shows
the quantity (ρ/ρ0) − 1 plotted in the color contour map
against the spatial coordinates x and y. As seen in the
figure, a large positive correction is centered at the refer-
ence origin indicating maximum increase in the number
of available states per unit energy. This is a clear indica-
tion that electronic properties are significantly altered in
our system. An 80% correction is observed at the max-
ima for our choice of driving frequency which yields a ω−1

of ∼0.01. We note that a similar behavior of the LDOS
has also been observed in the study of graphene in curved
space with positive curvature [51–54].

4 Conclusion

We conclude by noting that the use of periodic forc-
ing to generate the effects of curved space on 2D quan-
tum systems has a far reaching influence in theoretical
studies and technological applications. The traditional
Floquet analysis of periodically driven systems uses
the CBH/Trotter expansion to find the effective static
Hamiltonians. We use an alternative perturbative formula-
tion using a pulsed driving scheme and find an effective ap-
proximate Hamiltonian. We show that the driving scheme
can be chosen to simulate tunable geometric properties
of curved space. Our work particularly studies an optical
lattice analogue for graphene in curved space. The mass-
less Dirac equation and Hamiltonian in curved space, that
model electronic behavior in curved graphene, are derived
for a conformal metric. The same is shown to be obtained
in a periodically driven fermionic optical lattice having
chosen the appropriate modulating operators. We go on
to analyze the geometrical and physical features of the
system, namely, the Gauss curvature and LDOS. These
are computed for a particular choice of metric and devia-
tions from the unperturbed system are noted. This opens
up the possibility of synthesis of new systems in quantum
simulators and the study of their physical properties.

Appendix

The approach outlined here is based on earlier
works [26,28]. Time evolution of a state ψ(t) is given by:

i
∂ψ

∂t
= Ĥψ (A.1)

where Ĥ = Ĥ(t). The evolution of an initial state ψ(ti) =
ψi to a final state ψ(tf ) = ψf is governed by a Uni-
tary operator U(ti, tf ) such that ψf = U(ti, tf )ψi. The
Hamiltonian under consideration is of the form

Ĥ(t) = Ĥo + V̂ (t). (A.2)

Integrating equation (A.1) is not trivial since the
Hamiltonian at different times do not commute. Standard
perturbation methods are also only applicable when the
potential is a weak correction. We are interested in poten-
tials that are periodic in time

V̂ (t) : V̂ (t+ T ) = V̂ (t). (A.3)

Let us define a Unitary transformation Û(t)

Û : ψ(t) → Ûψ(t) = φ(t).

Such that φ(t) satisfies

i
∂φ(t)
∂t

= Ĥeff φ(t), (A.4)

where Ĥeff is to be made to be time-independent. We
seek an operator Û(t) = eiF̂ (t) (where F̂ (t) is Hermitian)
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such that φ(t) = Û(t)ψ(t), evolves under an effective time
independent Hamiltonian Ĥeff . Therefore we have,

i
∂

∂t

(
Ûψ(t)

)
= Ĥeff Ûψ(t), (A.5)

and
Û(t) = eiF̂ (t), (A.6)

which upon further evaluation yields

Ĥeff = eiF̂ (t)Ĥe−iF̂ (t) + i
∂

∂t

(
eiF̂ (t)

)
e−iF̂ (t). (A.7)

All the time dependence is pushed to the operator F̂ (t)
and Ĥeff is rendered time-independent. For an evolution
from ti → tf , we therefore have a trivial evolution

φ(tf ) = e−iĤeff (tf−ti)φ(ti). (A.8)

Since, φ(tf ) = eiF̂ (tf )ψ(tf ) and φ(ti) = eiF̂ (ti)ψ(ti), we
have U : ψi → ψf given by:

U(ti, tf ) = e−iF̂ (tf )e−iĤeff (tf−ti)eiF̂ (ti). (A.9)

Here, F̂ (t) is a time dependent Hermitian operator with
F̂ (t+ T ) = F̂ (t). It is important to note here that Ĥeff is
independent of both ti and tf , which have been transferred
into the “Kick” terms eiF̂ (ti) and e−iF̂ (tf ) respectively.
It is generally not possible to extract the operators F̂ (t)
and Ĥeff in closed analytic form except for some special
cases. However, if the driving frequency ω = 2π/T is high,
one can consider a perturbative expansion using the small
parameter 1/ω. The expansions for Ĥeff and F̂ are

Ĥeff =
∑

0≤n<∞

1
ωn

Ĥ(n) F̂ =
∑

1≤n<∞

1
ωn

F̂ (n). (A.10)

The prescription to obtain the effective Hamiltonian is as
follows.

a. Write equation (A.7) for Ĥeff as an expanded pertur-
bation series in ( 1

ω ).
b. At each order of perturbation, which corresponds to

a specific power of ( 1
ω ), retain the time-independent

average (taken over one time-period T ) in Ĥeff and
adjust F̂ to annihilate any time dependence.

c. Repeat the procedure at each order in perturbation.

The following identities are of help in following the above
prescription

eiF̂ Ĥe−iF̂ = Ĥ + i
[
F̂ , Ĥ

]
− 1

2

[
F̂ ,

[
F̂ ′Ĥ

]]

− i

6

[

F̂ ,
[
F̂ ,

[
F̂ , Ĥ

]]]

+ . . . (A.11)

and
(
∂

∂t
eF̂

)
e−iF̂ = i

∂F̂

∂t
− 1

2

[

F̂ ,
∂F̂

∂t

]

− i

6

[

F̂ ,

[

F̂ ,
∂F̂

∂t

]]

+ . . . (A.12)

Expanding the potential in Fourier series, we have

V̂ (t) = V̂0 +
∞∑

n=1

(
V̂ne

inωt + V̂−ne
−inωt

)
. (A.13)

Substituting Ĥeff =
∑

0≤n<∞
1

ωn Ĥ
(n) and F̂ =

∑
1≤n<∞

1
ωn F̂

(n) in equation (A.7), and using equa-
tions (A.11) and (A.12), the prescription given above gives
us up to O(1/ω2):

Ĥeff = Ĥ0 + V̂0 +
1
ω

∞∑

n=1

1
n

[
V̂n, V̂−n

]

+
1

2ω2

∞∑

n=1

1
n2

([[
V̂n, Ĥ0

]
, V̂−n

]
+ h.c.

)

+
1

3ω2

∞∑

n,m=1

1
nm

([
V̂n,

[
V̂m, V̂−n−m

]]

− 2
[
V̂n,

[
V̂−m, V̂m−n

]]
+ h.c.

)

F̂ (t) =
1
iω

∞∑

n=1

1
n

(
V̂ne

inωt − V̂−ne
−inωt

)

+
1
iω2

∞∑

n=1

1
n2

([
V̂n, Ĥ0 + V̂0

]
einωt − h.c.

)

+
1

2iω2

∞∑

n,m=1

1
n(n+m)

([
V̂n, V̂m]ei(n+m)ωt−h.c.

)

+
1

2iω2

∞∑

n�=m=1

1
n(n−m)

([
V̂n, V̂−m

]
ei(n−m)ωt−h.c.

)
.

(A.14)

This general expression for the approximate effective
static Hamiltonian for periodically driven systems is used
in the article.
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45. S. Savel’ev, W. Häusler, P. Hänggi, Phys. Rev. Lett. 109,

226602 (2012)
46. J. Gonzalez, F. Guinea, M.A.H. Vozmediano, Phys. Rev.

Lett. 69, 172 (1992)
47. F. de Juan, A. Cortijo, M.A.H. Vozmediano, Phys. Rev. B

76, 165409 (2007)
48. A. Cortijo, F. Guinea, M.A.H. Vozmediano, J. Phys. A 45,

383001 (2012)
49. A. Iorio, Ann. Phys. 326, 1334 (2011)
50. A. Iorio, G. Lambiase, Phys. Lett. B 716, 334 (2012)
51. A. Cortijo, M.A.H. Vozmediano, Eur. Phys. J. Special

Topics 148, 83 (2007)
52. A. Cortijo, M.A.H. Vozmediano, Europhys. Lett. 77, 47002

(2007)
53. A. Cortijo, M.A.H. Vozmediano, Nucl. Phys. B 763, 293

(2007)
54. A. Cortijo, M.A.H. Vozmediano, Phys. Rev. B 79, 184205

(2009)
55. F. Guinea, M.I. Katsnelson, M.A.H. Vozmediano, Phys.

Rev. B 77, 075422 (2008)
56. O. Boada, A. Celi, J.I. Latorre, M. Lewenstein, New J.

Phys. 13, 035002 (2011)
57. I.I. Satija, D.C. Dakin, J.Y. Vaishnav, C.W. Clark, Phys.

Rev. A 77, 043410 (2008)
58. D. Jaksch, P. Zoller, New J. Phys. 5, 56 (2003)
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