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Abstract. We report experimental observations of the mechanical effects of light on ellipsoidal micrometre-
sized dielectric particles, in water as the continuous medium. The particles, made of polystyrene, have
shapes varying between near disk-like (aspect ratio k = 0.2) to very elongated needle-like (k = 8). Rather
than the very tightly focused beam geometry of optical tweezers, we use a moderately focused laser beam
to manipulate particles individually by optical levitation. The geometry allows us varying the longitudinal
position of the particle, and to capture images perpendicular to the beam axis. Experiments show that
moderate-k particles are radially trapped with their long axis lying parallel to the beam. Conversely,
elongated (k > 3) or flattened (k < 0.3) ellipsoids never come to rest, and permanently “dance” around
the beam, through coupled translation-rotation motions. The oscillations are shown to occur in general, be
the particle in bulk water or close to a solid boundary, and may be periodic or irregular. We provide evidence
for two bifurcations between static and oscillating states, at k ≈ 0.33 and k ≈ 3 for oblate and prolate
ellipsoids, respectively. Based on a recently developed 2-dimensional ray-optics simulation (Mihiretie et al.,
EPL 100, 48005 (2012)), we propose a simple model that allows understanding the physical origin of the
oscillations.

1 Introduction

Radiation pressure (RP) forces from a few-milliwatts laser
beam are known to produce forces in the picoNewton
range, well enough to levitate and manipulate a small (mi-
crometer sized) dielectric particle [1–3]. Since the inven-
tion of laser optical tweezers (OT) [4], based on a single
very large-aperture beam, considerable savoir faire and
theoretical knowledge have been accumulated in the art
of trapping and manipulating particles with light. These
works have generated a huge amount of literature; see the
reviews by e.g. [5] or [6].

However research works have dealt essentially with the
simplest kind of particles namely spheres. In this case, so-
lutions have been proposed to handle about any kind of
particle, from a few tens of nanometers up to about hun-
dreds of micrometers. Transparent spheres whose refrac-
tive index is larger than that of the surrounding medium
(np > n, i.e. m = np/n > 1) may be trapped around the
focus of a single large-aperture Gaussian beam [4–6], or
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between the foci of a couple of coaxial counterpropagating
Gaussian beams [1,3,7–12]. Spheres made of weakly re-
fractive matter (m < 1), of reflective or absorbing materi-
als are pushed out of classical Gaussian beams, but, within
certain limits, the difficulty may be circumvented by using
beams with a hollow core. Laguerre-Gauss structures or
optical vortex beams [13,14] and optical bottles [15–17]
are well-known solutions to this problem. An alternate so-
lution, still with a Gaussian beam, is to scan the beam to
obtain a time-averaged structure that is equivalent to a
hollow beam [18].

In the case of a particle made of a homogeneous
isotropic non-absorbing material, the optical force may be
represented as the sum of surface stresses that are every-
where perpendicular to the surface [19]. A consequence of
this property is that the optical torque acting on a sphere
made of a transparent isotropic material is null. There-
fore the sphere cannot be made to rotate under the sole
action of optical forces. The situation is very different with
a non-spherical particle, since the resulting torque is not
null in general. Laser light will move the particle and make
it rotate in the same time. Manipulating the particle im-
plies handling 6 degrees of freedom, 3 position coordinates
(x, y, z) and 3 Euler angles.

Because of this complication, trapping of non-spherical
particles is both very different and less mastered than
that of spheres [20]. Little is known about possibilities
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to effectively trap particles of various shapes, either ex-
perimentally or theoretically. There is currently a lot of
interest from physicists and engineers about trapping and
manipulating elongated particles, in great part due to
the proliferating applications of nanotubes and nanorods
in biophysics, microfluidics, microelectronics and photon-
ics [21–25]. A goal pursued by engineers is to assemble
micron-sized structures and mechanisms made of such par-
ticles, a challenge that necessitates optical trapping and
control of the orientation of individual rods [23,26].

Experimental observations and the challenge of opti-
cally manipulating non-spherical objects in general have
motivated a bunch of theoretical and numerical studies
in the recent years. The case of rods has been addressed
along different shape variants, such as cylinders [27–30],
prolate ellipsoids [31–33] or chains of spheres [34]. Cao
et al. recently carried out a systematic study of equilib-
rium configuration of cylindrical micro-rods in the single-
beam OT geometry [35]. The latter authors found that, for
given beam characteristics, a rod can be trapped in dif-
ferent configurations, perpendicular, parallel or oblique,
depending on its length and diameter. Rod-shaped parti-
cles of micrometer sizes should be trapped parallel to the
laser beam axis, which indeed is in line with experimen-
tal observations [21,22,36]. Noteworthily the computation
of [35] predicts that rods having too large dimensions can-
not be trapped by the optical tweezers.

Similarly to rods, optical manipulation of disks poses
some difficulties. The problems to be solved may be gener-
alized to oblate ellipsoids or flat-shaped particles in gen-
eral. Examples of such particles are erythrocytes, fibro-
plasts, and cells in general. In the technique called “Op-
tical Chromatography” (OC) [37], optical forces are used
to separate, concentrate and sort biological species. In ad-
dition to shape dependence, orientation of the object and
its location within the laser beam critically influences its
response to laser illumination. In this context, it is impor-
tant to get basic knowledge about the optical forces on
disks and oblate ellipsoids. Recently Chang et al. carried
out a numerical work on oblate ellipsoids [38]; the goal was
to predict trajectories of such objects in a weakly focused
laser beam, of the kind used in OC geometries. Particles,
about 8μm in diameter were definitely smaller than the
beam diameter (32μm at beam waist). The authors com-
puted the trajectories of an oblate ellipsoid as a function
of its aspect ratio for different initial locations and orien-
tations. They found that such particles might follow un-
dulating trajectories, but that they would ultimately get
laterally trapped along the laser beam axis, in “orthogo-
nal” configuration (i.e. with their flat side parallel to the
axis). This conclusion is in line with previous observa-
tions [39,40] and theoretical determination of equilibrium
states [41] of disks or red blood cells in a laser beam (note
that Grover et al.’s computation took into account the
dumbbell-shaped cross section of the erythrocyte). Inter-
estingly, Chang et al. noticed that the particle might be
either attracted or repelled from the beam axis, depending
on its orientation. This property is the source of damped
oscillations in the computed particle trajectories.

The above data, either from experiments or numeri-
cal simulations may leave the impression that the action
of optical forces and torques on rod-, disk-like, or ellip-
soidal particles summarize into either stable (immobile) or
unstable (rejection from laser beam) states. However, this
is not true, because optical forces are fundamentally not
conservative [42,43], meaning that they do not derive from
a potential function. Because of this non-conservatism,
nothing forbids that a particle in a laser beam never comes
to rest, but instead moves permanently in a more or less
complicated manner. Indeed, a few such situations have
been reported. Noteworthily Pauzauskie et al. reported
that some of their rods would not stay vertically trapped
and would undergo sustained back-and-forth tilt motion
around the laser beam axis [22]. However no formal in-
terpretation was provided to explain the phenomenon. A
similar observation was shortly mentioned by Wilking et
al., with the letter I from a colloidal “alphabet soup” [20],
with no interpretation either. Neves et al. worked with
polymeric nano-fibres [21], which they were able to align
along the beam axis and stably trap in bulk water. How-
ever when the fibre was brought in contact to the cover slip
of the sample chamber, it switched to a strongly oblique
orientation. In this configuration, the fibre was observed
to continuously rotate around the laser axis. Though the
authors did not provide an explanation of how the particle
would adopt a configuration leading to sustained rotation,
they could verify that angular velocities were in line with
computed values of optical torques [21].

An observation that may have some similarities with
the above-mentioned oscillation of micro-rods [22] has
been reported by Cheng et al. from trapping experiments
with disk-shaped organic particles [40]. The latter authors
were able to stably trap disks in bulk water over a large
range of dimensions (between 0.4 and 20μm in diame-
ter) around the focus of a linearly polarized laser [39].
The disks were trapped with their flat sides lying verti-
cal along the beam axis. However, when the optical trap
was moved close to the top window of the cell chamber,
the disks were observed to undergo sustained oscillations,
combining lateral and tilt motions around the beam axis.
Cheng et al. proposed an interpretation to explain why the
disks, which were stably trapped in bulk water, would os-
cillate when the particle was contacted to the cell top sur-
face. These authors spotted the change in hydrodynamic
drag caused by motion along the top surface as the es-
sential difference between both situations. They proposed
a model expression for the drag force along the surface
that coupled translation and tilt angle of the disk. Based
on this expression, they showed that their model would
indeed produce a bifurcation, between static and oscillat-
ing states [40]. In this model, the control parameter of the
bifurcation is the distance z between the beam waist and
the top surface.

Our own work, the matter of the following sections,
is dedicated to more or less similar phenomena which we
observed with ellipsoidal particles, including prolate and
oblate shapes. Rather than a tightly focused beam in an
optical tweezers configuration, we use a moderately fo-
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Fig. 1. Examples of prolate ellipsoids made from PS spheres by mechanical stretching. k is the length-to-width ratio of each
particle, as seen in the photos.

cused beam in a simple optical levitation scheme. The
size parameters of the experiments, and the beam diffrac-
tion length l (about 14μm), are definitely larger than
those involved with micro-rods and single beam traps, but
they offer the decisive advantage that the particle can be
observed from different directions, while the main physi-
cal trends may be extrapolated to the submicron range.
Moreover, the ellipsoids have very few birefringence and
show little sensitivity to polarization of the laser beam, an
appreciable simplification compared to disks and nano-
ribbons. Experiments show that the ellipsoidal particles
either come to rest inside the beam or go through a charac-
teristic back-and-forth motion, with a transition between
both regimes that critically depends on the particle aspect
ratio. We insist that oscillations occur in general, be the
particle in bulk or close to the top surface. We offer a sys-
tematic experimental characterization of the phenomenon,
and propose a physical interpretation based on a simple
model of RP forces for an ellipsoid, in 2 dimensions. The
model provides a qualitative explanation of why the parti-
cles oscillate, essentially because of the structure of optical
forces.

This work has been the matter of a recent short publi-
cation, whereby we reported key results for elongated (pro-
late) ellipsoids and a 2-dimensional ray-optics simulation
of the ellipsoid-laser beam mechanical interaction [44].
The goal of this full-length article is to provide more de-
tailed experimental observations. We end with a simplified
model based on previous simulations that allows under-
standing the physical origin of the oscillations. The paper
is organized as follows:

– In sect. 2, we describe the experimental hardware and
procedures. The section includes details on the prepa-
ration of the ellipsoidal particles, the levitation setup,
and the devices for observation, signal acquisition and
recording.

– The main experimental results are presented in sect. 3.
Essentially we describe the different behaviors of the
particles, in bulk water, close to a fluid-fluid interface
and to a fluid-solid interface. Examples are given of
periodic and irregular oscillations, depending on par-
ticle characteristics. As a major outcome of the ob-
servations, a state diagram is proposed that gathers
the different dynamic states of particles according to
their aspect ratio (k). The diagram includes prolate

and oblate ellipsoids, and features the bifurcations be-
tween static and oscillating states, with k as a control
parameter.

– In sect. 4 we briefly recall the principles of the ray-
optics simulation and we examine the structures of the
computed optical forces and torques as functions of the
particle tilt and off-axis position. Extracting the main
features of both functions, we propose a model from
which we predict the kind of experimentally observed
bifurcation between static and oscillating states.

– The work is summarized in sect. 5, together with
prospects for future investigations.

Some more information on technical points is pro-
vided as supplementary materials. A detailed description
of the procedure used to prepare ellipsoid-shaped parti-
cles is given in S1. S2 is about the beam characteristics
in our experiments. In S3 we describe a side experiment
about the resonance of sub-critical particles and address
the problem of the influence of beam polarization on ob-
served dynamics. Details of our multipolar force-torque
model are provided in S4.

2 Experimental hardware and methods

2.1 Preparation of anisotropic particles

We used a technique initially designed by Ho et al., and
later further developed by Champion et al., to synthe-
size prolate ellipsoidal particles [45,46]. We used parti-
cles made of polystyrene (PS). A detailed description of
the preparation method is given in Supplementary Ma-
terial S1. Briefly, the procedure starts with embedding
PS spheres inside an elastic film made of polyvinyl alco-
hol (PVA). We then heat up the system above the glass
transition temperatures Tg of the spheres and slightly be-
low that of the PVA matrix. In the next step, the film is
mechanically stretched. The resulting stress deforms the
initially spherical particles into approximately ellipsoidal
shapes. Uniaxial stretching gives prolate particles, while
oblate shapes are obtained by biaxial stretching. Once the
PS particles are stretched, the temperature is lowered be-
low Tg. The PS constituent then returns to solid-like state,
which allows freezing the particle shape permanently. Ul-
timately the PVA is removed by washing in water and the
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ellipsoidal particles are collected as a dilute water suspen-
sion. In our experiments we used spheres D = 10μm in
diameter (purchased from either Polysciences, Molecular
Probes or Invitrogen). Photos of obtained prolate parti-
cles are displayed in fig. 1. The method may be applied
to a rather broad range of particle sizes, say from a few
hundreds of nanometers up to a few tens of micrometers.

Ultimately we obtain ellipsoids whose shape charac-
teristics are given by a couple of aspect ratios k1 and k2:
k1 = a/b and k2 = a/c, where a, b, c are the ellipsoid semi-
axes (a > b > c, conventionally). In general, we cannot
measure a, b, c separately from simple microscope views,
as in fig. 1, because each particle can be observed only
from the top (meaning only one direction). Fortunately
the 3-dimensional particle shape can be observed in the
levitation experiments, when the particle is lifted up with
its long axis vertically oriented. We are thus able to deter-
mine a, b, c separately, and then k1,2 with a ±2.5% relative
uncertainty. Based on this procedure, we discovered that
the stretching procedure does not yield axisymmetric par-
ticles (otherwise called “spheroids”) in general (meaning
a �= b �= c). Nevertheless, a small fraction of the popula-
tion is found to be approximately symmetric, i.e. b ≈ c,
within a 10% uncertainty.

2.2 Optical setup

The core of the setup is sketched in fig. 2a. Optical lev-
itation of individual particles is achieved by means of a
green Gaussian laser beam (λ = 514 nm, from an argon
ion laser in the early versions of the setup, now from a solid
state Coherent Genesis laser). The beam is made vertical
(‖ z) by reflection on the dichroic mirror DM, and focused
through ML1 objective inside the glass cell (GC) that con-
tains the particles. The part of the setup upstream of DM
is sketched in fig. 2b. L1, L2, L3 objectives play the same
roles as in classical optical tweezers designs (see, e.g., [47])
based on Keplerian telescopes. Lens L1 focuses the beam
on a couple of closely assembled galvanometric mirrors
(GM), whose position is conjugate to that of ML1 rear
focus through L2 and L3. Rotating each of GM mirrors
then results in horizontally translating the beam inside
the sample volume.

The beamwaist radius in GC (ω0) may be varied be-
tween 9 and 1.25μm, essentially by changing the distance
between L1 and L2 (see Supplementary Material S2 for
details). In this paper, we report data that were obtained
with ω0 = 1.3μm. We measured a beam diffraction pa-
rameter M2 ≈ 1.14 indicating that the laser has a good
beam quality. The beam diffraction (Rayleigh) length is
about 14μm.

A couple of digital cameras (C1, C2) yield simultaneous
video images of the particle, from top through ML3 and
laterally through ML2, with a ×50 magnification. ML1,
ML3 (Zeiss) and ML2 (Mitutoyo) are long-working dis-
tance microscope objectives. The top view may be focused
into the plane of beam waist (z = 0) or at finite distance
from it (z > 0 or < 0). We can vary z between about −100
and +100μm. Observing levitated particles from both top

Fig. 2. (a) Sketch of optical setup. (b) Upstream part of the
setup, used for beam shaping and translation. The elements
are not to scale, for clarity. LB: laser beam. BS: beam splitter.
TL1,2: tube lenses. LP1,2: long-pass (red) filters. M1,2: mirrors
(max. reflection at 22.5◦ incidence at 514 nm). D: diaphragm.
Bright field illumination is provided by two white light sources
(WL1,2), in Koehler configuration. See text for other symbols
definitions.

and side is made possible using parallelepiped cells that
have polished sides in all directions. Ours (from Thuet,
France) are 1 or 2 mm in thickness.

A typical experiment starts with capturing one particle
from the suspension. As the PS has a density (1.05 g/cm3)
slightly larger than that of water, most of the particles
are found lying on the lower boundary of the chamber,
with a little but discernable amount of Brownian mo-
tion. A simple method amounts to horizontally shifting
the cuvette to bring a particle across the laser beam. Fig-
ures 3a,b illustrate the procedure in the simple case of
a spherical particle. The laser beam then drives levita-
tion; the sphere locks onto the beam axis and starts lifting
up. The ascension ends when the particle gets in contact
to the chamber’s top surface (fig. 3b). Interestingly, as-
cension may be stopped somewhere in bulk water, away
from glass boundaries, if one tunes the laser power to a
small value Plev (2mW is typical), just enough to equili-
brate the particle’s buoyant weight. Optical trapping of a
sphere is not really achieved in optical levitation with a
single beam, because the vertical equilibrium is not sta-
ble. Strictly speaking, the moderately focused laser beam
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Fig. 3. General sketch of optical levitation experiments. The figure illustrates the case when the laser beam waist and the
observation plane coincide, i.e. z = 0. The black frame represents the boundaries of the sample glass cell. (a,b): Levitation of
a spherical PS particle. (c,d): Levitation of a short prolate ellipsoid (c), and of a large-aspect-ratio ellipsoid (d). In the latter
case, the particle oscillates in the laser beam, in bulk water and in contact to the cell top wall.

only provides 2-dimensional (x, y) trapping. However, it is
possible to tune the power such that the particle hardly
drifts up or down within about a minute, allowing for a
precise determination of Plev. Real 3-dimensional equilib-
rium is achieved when the sphere hits the ceiling of the
cuvette (fig. 3b), as the particle gets locked by the optical
forces and the contact force exerted by the glass surface.
The sphere there is kept immobile (fig. 3b).

The steps to start levitation of ellipsoids are the same
as for a sphere (figs. 3c,d) with the capture of a particle
lying at the bottom of the cuvette. Levitation of a short
ellipsoid (k < 3, say) is very simple and technically simi-
lar to that of a simple sphere. We start the experiment by
picking up one ellipsoidal particle with the laser. Within
a few seconds, the particle stands up and starts levitat-
ing. Levitation ends with the ellipsoid sitting vertically in
contact to the cuvette ceiling, as sketched in fig. 3c. Lev-
itation of longer ellipsoids is more delicate, because these
particles do not keep locked on the laser beam axis and
constantly oscillate, moving out and back to the axis. Lift-
ing the particle up to the top demands frequent feedback
from the experimentalist, using the x, y translation stages
to keep the particle within the beam. Very small aspect
ratio ellipsoids, meaning rather flat disk-like particles, be-
have similarly to elongated ellipsoids, as they constantly
oscillate.

2.3 Data acquisition and analysis

We characterized particle dynamics directly from video
images or indirectly from the 1-dimensional signal of a
photodiode.

2.3.1 Photodiode signal

The photodiode (PD in fig. 2) records the transmitted
laser power through a pinhole (H). The photodiode sig-
nal I(t) thus bears direct information about the optical
loss due to scattering of light by the particle. An oscilla-
tory motion results in time modulation of I(t). By nature
and contrary to video movies, I(t) is a global signal, from
which it is not possible to unravel translation and rotation

components of the particle’s motion. However the photodi-
ode signal offers the advantage of high resolution in time,
with sampling frequencies up to 10 kHz, much higher than
video frame rate.

2.3.2 Video and particle tracking

Images and movies are acquired from the two CCD cam-
eras (Edmund optics) simultaneously using StreamPix
software. This enables us to observe the system from dif-
ferent directions, with a frame rate up to 40Hz. The
recorded images are used to determine particle size, as-
pect ratio and beam position. Position and tilt angle of a
particle are determined through a particle tracking pro-
cedure. We use a home-made autocorrelation treatment
that comes as a plugin of ImageJ software (NIH Image).
At the current stage, the analysis is based on the assump-
tion that the ellipsoidal particle is axi-symmetrical (i.e. a
spheroid). In this context, and neglecting the influence of
beam polarization (see Supplementary Material S3), the
orientation of the oscillation plane around the laser beam
axis is degenerate; then only one coordinate (θ) is neces-
sary to define the particle angular configuration. In spite
of the above limitation, the procedure is applied even to
non-symmetrical particles. In the latter case, θ plays the
role of an effective tilt angle, in reality a function of the
particle’s three Euler angles.

For each video frame, the analysis yields an elliptical
contour that best fits to the image of the particle. The
procedure is illustrated in fig. 4 with a sequence of con-
secutive side view images of an oscillating particle. The
uncertainty in θ is ±0.8◦ (see table 1).

Note that the side view only yields an apparent tilt
θtilt (< θ) that is equal to θ only when the plane of oscil-
lation Πosc is perpendicular to the axis of the side camera
(this is so in fig. 4). The particle tilt may be obtained
from top views as well, without any restrictive condition
on the orientation of Πosc. However the accuracy of the
latter method becomes poor for small values of θ. The op-
timum performance is obtained by combining top and side
observations, using top views to monitor the orientation
of Πosc and side views to measure θ.
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Fig. 4. Analysis of consecutive images of an oscillating ellipsoid from side view movie.

Table 1. Output file from particle tracking, in correspondence
to the frames of fig. 4. The origin of the tilt angle (θ = 0) is
taken for the particle symmetry axis lying vertical (parallel to
the laser beam axis).

Time [s] x [μm]±0.5 y [μm]±0.5 θ [deg]±0.8

0 2.7 −1.7 27.2

0.1 0.5 1.1 10.7

0.2 −0.2 0.5 −2.2

0.3 −3 −0.8 −33.5

2.3.3 Analysis of oscillations

In many examples (see sect. 3), recorded signals turned
out periodic, within experimental noise: this was most ev-
ident from video records analysis, which showed simple
closed trajectories in (x, y, θ) space. The corresponding
photodiode signal was analyzed using standard Fourier de-
composition, yielding well-marked peaks at fundamental
and harmonic frequencies in the power spectra.

Reported data in this article are limited to time series
and corresponding Fourier spectra. In the case of non-
periodic signals, Fourier analysis was complemented by
phase space reconstruction analysis (see, e.g., [48]), as is
commonly used in non-linear dynamics problems. The goal
of this analysis was to reveal cases of deterministic chaos
in certain types of signals whose power spectra did not
show any well-marked frequencies. This part of the work,
being currently under investigation, is beyond the scope
of this article; results will be the matter of a later report.

3 Oscillating particles—experimental
observations

In this section, we first report observations of particles in
bulk water, in a pure levitation scheme, meaning that the
laser is operated at small power (3mW, typically), just
enough to sustain the weight of the particle. Next we turn
to the case of particles pushed up to contact with the up-
per boundary of the sample cell, which may be a water-air,
water-oil or simply the water-glass interface. In the latter
configuration, the laser power may be increased at will,
since the particle’s altitude is bounded by the interface.

Fig. 5. Lateral view of an oscillating prolate ellipsoid. (a) In
bulk, far away from the surfaces, where the mirror image of
the particle is out of the view of the camera. The arrows show
the oscillation direction. (b) Near the top surface, where both
the particle and its mirror image are visible. The bottom one is
the true particle located few microns below the black straight
line (approximate location of the top chamber surface). Images
were recorded every 1 second.

3.1 Particle behavior in bulk water

Optical levitation of a spherical PS particle in water is a
straightforward experiment that allows keeping the par-
ticle at about constant altitude in bulk fluid, anywhere
inside the sample cell. In a similar experiment with non-
spherical particles, we observed that such particles, either
come to rest inside the beam or go through a characteristic
dancing motion, with a transition between both regimes
that critically depends on their aspect ratio. With prolate
ellipsoids, of average aspect ratio k, oscillation appears
when k is larger than a threshold value (k > kCP, where
the index P stands for “prolate”); see fig. 5. Similarly, an
oblate particle oscillates if it is flat enough, i.e. if k < kCO
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Fig. 6. Top view of an oscillating oblate ellipsoid in bulk water. The white cross “X” locates the position of the beam center.
The arrows represent the oscillation direction.

(index O stands for “oblate”); see fig. 6. In such cases,
the particle is seen to oscillate as soon as it comes into
the laser beam, at the beginning of the experiment and
during ascension. We thus bring the particle up in bulk
water, away from the cell bottom and still well below the
cell ceiling. By tuning the laser beam power down to an
appropriate value, of the order of 3mW, we are able to
cancel ascension and maintain the particle at about con-
stant altitude. There, it undergoes sustained oscillations,
combining angular and translational excursions (both lat-
erally and in altitude).

Figure 5 shows lateral views (captured by camera C2,
see fig. 2a) of an oscillating prolate particle, deep in bulk
water (fig. 5a) and at short distance (Δh) from the top
water-glass interface (fig. 5b). As the interface is highly
reflective at grazing incidence, a mirror image of the par-
ticle is visible on top of the images. The distance between
the tips of the particle and its image is simply 2Δh.

3.2 Particle in contact to an interface, at the beam
waist (z = 0)

In spite of their formal simplicity, experiments in bulk
water are delicate for they require the use of very low laser
power, resulting in slow particle motion, with a unique
frequency determined by the levitation power. Therefore,
for practical convenience, most of our experiments were
carried out with the particle touching the upper interface
of the sample cell. Contact to the interface serves as a
condition to fix the altitude of the particle below an upper
boundary, and, most interestingly, allows the experimenter
to vary the laser power at will. As we will see, having the
particle in contact to the interface rather than in bulk
brings no change to the observed oscillatory motions, at
least qualitatively.

3.2.1 Fluid-fluid interface

We start with the case of a water-oil (W/O) interface.
We matched the viscosity of the oil to that of water
(η = 1mPa s at room T ). Matching was achieved using
a decane:undecane mixture (79.5 : 20.5%wt), as in [49].
Surface tension is large enough to maintain a flat inter-
face, even when the particle is pushed up by the opti-
cal levitation force. Compared to bulk water, the water-
oil interface essentially imposes a zero vertical velocity
component (vz = 0) of the fluid at the altitude (zint) of
the interface. The condition is then intermediate between
bulk water and a solid interface (where vx, vy, vz = 0
at zint).

Very similarly to behaviors in bulk water, short prolate
ellipsoids did not oscillate, while longer ones did; see the
example shown in fig. 7a. Thus the bounding condition in
z turns out not essential for the existence of oscillations.

The case of water-air interface, intermediate between
water-oil and water-glass, does not differ from the general
tendency; see the example of an oscillating oblate ellipsoid
in fig. 7b. As we mentioned above, only the tip of the par-
ticle is in contact with the interface, meaning that the par-
ticle body is entirely inside water (a kind of complete wet-
ting). This is strictly true with the water-glass interface.
In the case of water-air or water-oil interface, complete
wetting is maintained only for a while, from a few sec-
onds up to several minutes, say. This leaves enough time
for oscillations to be observed and recorded, as reported
above. Ultimately, the particle gets through the interface
and settles in a partial-wetting configuration, which is en-
ergetically favorable. The transition from complete to par-
tial wetting is irreversible, and is a dynamically complex
phenomenon [50].
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Fig. 7. (a) Horizontal motion (y coordinate) of an oscillating prolate ellipsoid (k1 = 4.1, k2 = 3.8) in contact to a water-oil
interface. P � 15 mW and z = 0. (b) Photodiode signal from an oblate ellipsoid (k1 = 0.26, k2 = 0.3) oscillating in contact to
a water-air interface. P � 15 mW and z = 0.

Fig. 8. Static configuration of an oblate ellipsoid of moderate ellipticity (k1 = 0.48, k2 = 0.44). (a) Particle lying on the cell
floor before laser illumination. (b) The laser locks the particle with its flattened side vertical. The white cross “X” represents
the beam position. The numbers at bottom indicate the time seconds.

Fig. 9. (a) Large-aspect-ratio ellipsoid (top views): Consecu-
tive images taken every 0.1 second showing different positions
and orientations in time. The white cross represents the loca-
tion of beam axis. (b) Combined top and lateral views. Photos
in the upper row are top views (xy plane), and those in the
lower row are side views (xz plane). Successive frames are sep-
arated by 0.1 second. The dot-dashed line in the top marks the
instantaneous plane of oscillation (Πosc). The angle indicated
at the bottom (2θ) is twice the particle long axis tilt angle.
Aspect ratio of the ellipsoid: k1 = 3.6 and k2 = 3.3.

3.2.2 Water-glass interface

We now turn to the case of a water-glass interface, by
far the most exploited configuration in our experiments.
Compared to fluid interfaces, a glass wall introduces a no
slip condition, meaning that the fluid velocity has to be
zero at the solid surface. While this condition makes the
hydrodynamic drag of the particle different from that in
bulk or with fluid interfaces, experiments indicate that
major trends in particle dynamics (essentially the bifur-
cations between static and oscillating states) are the same
whatever the nature of the interface.

We shall present the different types of particle dynam-
ics, according to particle shape parameters. Recall that
this subsection only deals with the case of a particle lo-
cated close to the beam waist plane (z = 0). Cases of par-
ticles away from the beam waist plane (meaning |z| > l)
are the matter of subsect. 3.3.

Static equilibriums are observed with particles of
“moderate ellipticity”, namely prolate particles of k < 3
or oblate ones of k > 0.33. A prolate spheroid locks on
the laser beam with its symmetry axis vertical. A slightly
oblate particle (see fig. 8) gets immobilized too, but
with its symmetry axis lying horizontal. Strictly speaking,
the above statements only hold for symmetrical particles
(k1 = k2 = k), but the rule still roughly applies to non-
symmetrical particles that are not far from axisymmetry
(as is the case in fig. 8).

Sustained oscillations are systematically observed with
particles of large ellipticity (k > 3 or k < 0.33). An os-
cillating particle executes a kind of “dance”, consisting in
back and forth motions both in position and orientation;
see the example of a prolate particle in fig. 9.

Whether the motion is periodic or not depends on the
particle shape parameters and its position along the beam
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Fig. 10. Particle aspect ratio: k = 4.5; data obtained from video images. (a) Black curve: particle horizontal x-translation.
Blue curve: particle tilt (θ). (b) The power spectral density of the particle horizontal motion (x). (c) 2d projections (colored
symbols) of the corresponding 3d trajectory (black symbols) in phase space showing a limit cycle. Oscillation frequency is close
to 1Hz at a laser power of 11 mW.

Fig. 11. Data recorded with a (k1 = k2 = 3.8) particle. (a) Modulation of the on-axis laser power recorded with the photodiode
and (b) corresponding power spectrum density; fundamental frequency ≈ 2 Hz. Laser power: 19 mW.

axis. It is not completely clear to us to identify the re-
quired conditions for the motion to be periodic (or not).
However, we frequently observed that periodic oscillations
were obtained with ellipsoids that were close to symmetri-
cal (k1

∼= k2) and of moderate aspect ratio (k < 5, say, in
z = 0 configuration). An example pertaining to this cate-
gory is shown in fig. 10. Data in fig. 10 have been obtained
by video image analysis, which yielded translational and
rotational coordinates of the particle in time. The period-
icity of the motion is illustrated by the well-marked peak
in the power spectrum of the x-coordinate (fig. 10b) and

by the limit cycle in the (x, y, θ) representation. Another
example of a presumably periodic motion, based on the
photodiode signal, and the associated Fourier power spec-
trum, is shown in fig. 11.

The period —more generally the characteristic time—
of the oscillations is directly controlled by the laser power.
Increasing P decreases the period. We observed that the
frequency (f) of oscillation of PS ellipsoids just scales lin-
early with the laser power. This result is similar to that
previously reported by Cheng et al. [39,40] for birefrin-
gent wax disks. Changing the power does not change the
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Fig. 12. Photodiode signal from an oscillating particle (k = 4.1) at two different powers. (a,c): Time series at 9.1 mW and
22.3 mW, respectively. (b,d): Corresponding power spectral densities (PSD). For clarity, the frequency has been normalized by
the laser power.

Fig. 13. Proportionality of the oscillation characteristic time to η/P . Dependence on laser power (a) and fluid viscosity (b),
measured with different prolate particles.

dynamical state qualitatively, see fig. 12 for illustration.
Within experimental noise, the signal keeps the same mor-
phology, while the time scale is divided by 2.44, the ratio
of involved powers. We repeated the same test for different
particles and reached the same conclusion, see fig. 13a for
a summarizing graph.

The proportionality of f to P is what we expect based
on the simple principle that the particle motion is driven
by optical forces, proportional to P , balanced by Stokes
drag forces, proportional to the fluid viscosity (η). We then
guess that f is inversely proportional to η. We verified the
latter dependence experimentally by varying the tempera-
ture of the water from 10 to 60 ◦C, resulting in a viscosity
change from 1.2 to 0.3mPa s (a three-fold decrease of the
viscosity). As the corresponding change in index of refrac-
tion is insignificant (< 0.5%), the optical forces are about
constant. The temperature was regulated by circulating

water and a thermocouple was used to measure the tem-
perature of the water medium inside the sample cell. We
measured the oscillation frequencies of a few ellipsoids as
a function of the sample temperature. We found a linear
relationship between viscosity of the medium and period
of oscillation, within statistical scatter (fig. 13b).

These tests show that the P/η ratio intervenes as a
scale factor of the time variable. Experiments indicate
that the laser power has about no influence on the am-
plitude of oscillations. This can be seen from fig. 12a,c,
showing the fluctuations of the photodiode signal (I) for
two different values of P . Oscillations in I around the
mean value, namely ΔI = I − 〈I〉, are the signature of
particle oscillations. Because the photodiode is a linear de-
tector, 〈I〉 and ΔI are proportional to P . In experiments,
the amplitude of oscillation (given by (x, θ) variables in
a 2d representation, see sect. 4) is represented by ΔI/P .
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Fig. 14. Example of non-periodic dynamics. Aspect ratio: k1 = 4.2, k2 = 4. (a,b): data from video analysis. (c,d): data from
photodiode signal analysis (see text for details).

As can be read from fig. 12, ΔI/P ≈ 0.022 for P = 9.1
and 22.3mW, indicating that particle excursions were the
same for both powers. Though this conclusion may seem
at odd with intuition, it is in line with the model presented
in sect. 4.

In contrast to axi-symmetric moderately elliptical par-
ticles, non-symmetrical and/or longer particles gave non-
periodic or irregular signals, with no well-marked peaks in
the frequency spectrum. On fig. 14 we show the example
of a particle having k1 = 4.2 ± 0.05 and k2 = 4.0 ± 0.05.
Main features, gathered from video image analysis, are:
i) The amplitude of oscillations is modulated in time, see
fig. 14a, and ii) the plane of oscillation (Πosc, defined as
in fig. 9) rotates continuously, see fig. 14b. Recorded time
series reveal that the motion combines amplitude and fre-
quency modulations. The frequency modulation is visible
in the diagram of fig. 14d, which was obtained from a
time-frequency analysis of the photodiode signal [51]. The
modulation looks periodic, with the same period as the
amplitude modulation, about 16 s.

The above example still has a rather simple struc-
ture, which we tentatively described in terms of com-
bined amplitude and frequency modulation. We carried
out many more observations with a variety of elongated
non-symmetrical particles, and obtained a whole wealth
of complex oscillation dynamics, with no clear underlying
structure.

We end this subsection by gathering the informa-
tion on particle dynamics into a state diagram. The di-
agram (fig. 15) summarizes the dependence of the dy-
namical state on particle shape parameters. We specify
only k1 and k2 as control parameters, since the laser

power is not essential. Note that the displayed diagram
only holds for ellipsoids whose centers are about in the
beam waist plane (z = 0). The top right quarter corre-
sponds to prolate ellipsoids. Increasing k1,2 indicates par-
ticles which are more and more elongated. Points close
to the diagonal mean that particles are about cylindri-
cally symmetrical, while those well outside of the diag-
onal are far from symmetrical. The bottom left quarter
corresponds to oblate ellipsoids. In this case, small k1,2

values refer to flattened particles. The diagram allows to
classify particles into static and oscillating, with two bi-
furcations (kCP

∼= 3 and kCO
∼= 0.33) in between, on

the prolate and oblate sides, respectively. Solid red cir-
cles correspond to particles which are stably trapped by
the laser beam. In this class, nearly symmetrical parti-
cles simply do not move (apart from very small Brown-
ian fluctuations), and stay in on-axis configuration. Solid
white circles correspond to sustained “dance”, of which
we gave examples above. Solid blue squares correspond to
what may be termed “sub-critical” particles, meaning el-
lipsoids whose aspect ratio is only slightly less than kCP

or slightly larger than kCO. Such particles are within the
bifurcation threshold and then do not permanently oscil-
late, but they are very “susceptible”: when such a par-
ticle is slightly pushed away from the beam axis in x or
y, it comes back to vertical equilibrium through a few
damped oscillation cycles. Interestingly, oscillation of a
subcritical particle can be excited by back-and-forth shift
of the laser position (see Supplementary Material S3).
The excitation can be made resonant by matching the
frequency of the laser beam lateral shift to that of the
particle.
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Fig. 15. State diagram, summarizing the dependence of the
dynamical state on particle shape parameters k1 = a/b and
k2 = a/c (see sect. 2.1). All data of the diagram correspond to
z = 0, i.e. particle centers were approximately at the altitude
of the laser beam waist.

3.3 Influence of beam diameter and wave curvature

Up to now we only considered particles whose centers were
close to the beam waist (ω0 = 1.3μm), at z = 0, by defi-
nition. Now we want to estimate the influence of changing
the axial position of the particle. In our experiments, the
particle is in contact to the glass cell top surface, and
observation is focused in this plane. We vary z by shift-
ing the laser beam waist vertically to a position either
below (then z > 0) or above (z < 0) the observation
plane. By changing z we vary both the beam diameter
(2ω(z)) and the wavefront curvature felt by the particle;
see fig. 16. The beam width increases with |z|, while the
wave is convergent for z < 0 and divergent for z > 0.
The reference length to estimate the amplitude of the
change in z is the beam diffraction length, l = πω2

0/λ.
With λ = 386 nm for the laser wavelength in water, l is
about 14μm. The beam diameter is twice that of the beam
waist (2ω(z) = 4ω2

0
∼= 5.4μm) for z =

√
3l ∼= 24μm.

In what follows, we only consider prolate ellipsoids,
which are long enough to oscillate at z = 0. As a general
trend, we observe that a moderate increase in |z|, on the
order of l, does not suppress the oscillations, but it does
change details of the dynamics. Conversely, oscillations are
“killed” at large l, when the beam width becomes compa-
rable to the particle (large) size. In this case, the particle
switches to static horizontal equilibrium, as sketched in
fig. 16b. The impact of a small change in l is illustrated
below, with two examples. We observed that increasing
the beam width may change the particle dynamics from
irregular to approximately periodic (fig. 17) or in the op-
posite way (fig. 18). Figure 17 refers to a particle that
was oscillating in a complicated manner at z = 0, with
combined motions in x, y, θ and in the orientation of the
oscillation plane. The irregular dynamics recorded at the

Fig. 16. (a) Ellipsoidal particle located at the beam waist. In
average, the long axis of the particle is aligned parallel to the
beam axis. (b): The same particle, when far enough from the
beam waist, switches to horizontal static equilibrium.

beam waist changed to more regular dynamics when the
particle was located upstream of the beam waist (z < 0)
plane, with a concomitant stabilization of the oscillation
plane.

The example displayed in fig. 18 shows the opposite
trend, now with a particle whose oscillatory motion was
periodic at z = 0, and which became irregular for neg-
ative z. We made similar observations with particles at
z > 0, confirming that both types of changes (periodic �
irregular) were possible on both sides of the beam waist
plane.

A vertical-to-horizontal (V-to-H) transition occurs at
large |z|, when the beam diameter becomes very large. The
transition is illustrated below (fig. 19). The photos are top
views, showing an elongated particle (k ≈ 4.9). z was ini-
tially tuned to zi ≈ 50μm, a configuration where the par-
ticle was permanently oscillating. The sequence shows the
response of the particle dynamics to an increase in z, up
to zf ≈ 80μm. The particle still goes through a few slow
oscillations (top row) and then comes to rest in horizon-
tal equilibrium (bottom row). We shortly investigated the
influence of beam polarization on the particle horizontal
equilibrium. The conclusion is similar to that drawn for
oscillating states, i.e. we did not notice any clear correla-
tion. H configurations of prolate ellipsoids were randomly
oriented.

The V-to-H transition, i.e. the change in orientation of
spheroids from vertical (either statically or in average) to
static horizontal alignment in response to increasing beam
width, holds for both oscillating and non-oscillating pro-
late ellipsoids. But the transition value of z (= zVH) which
causes the particle to flip horizontal, varies from particle
to particle. As a rough indication, we observed that the
transition occurred when the beam diameter 2ω(zVH) was
between 60% and 80% of the particle length (2a).
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Fig. 17. Non-symmetrical ellipsoid (k1 = 4, k2 = 3.6). In (c,d) the particle is located upstream of the beam waist plane.
(a,c): Time series signal from photodiode. (b,d): Corresponding Fourier power spectrum density.

Fig. 18. Symmetrical ellipsoid (k = 4). In (c,d) the particle is located upstream of the beam waist plane. (a,c): Time series
signal from photodiode. (b,d): Corresponding Fourier power spectrum density.

Summarizing :
Whatever the type or shape of the particle, oscillations
of prolate ellipsoidal particles disappear for large enough
beam width. Thus, the necessary conditions for the oscil-
lations to exist are:

– the particle should be elongated enough (k > 3),

– the beam width should not be too large (z < |zmax| =
zVH)

whereas the type of dynamics is controlled by:

– the symmetry and aspect ratio of the particle,
– the beam width.
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Fig. 19. Video images of a prolate ellipsoid showing the transition to horizontal orientation. Once the particle is lying flat on
the interface, it does not show any form of sustained oscillation.

4 2d simulation and 4-pole force/2-pole
torque model

In [44] we proposed a minimal description of the mechan-
ical effect of the laser beam on ellipsoidal particles using
the ray-optics approximation. The simulation is restricted
to dimension 2; meaning that light rays are confined inside
a vertical plane and the particle is reduced to an ellipse.
The laser beam is represented as a collection of paral-
lel rays, with a Gaussian distribution of intensities. Thus
the simulation ignores the variation of the beam diameter
on the scale of the particle length. Optical forces F and
torques Γ are obtained by summing up all the elementary
momentum transfers due to the many reflections and re-
fractions of each ray. In the general case F and Γ depend
on x, z, θ; but results of [44] were presented in the case of
a particle in contact to the top interface, i.e. for z ≈ 0, for
simplicity (we later checked that the latter constraint was
not essential, similarly to experimental observations). The
simulation provides 2-dimensional maps, namely F (x, θ)
and Γ (x, θ). The particle dynamics is obtained from the
balance of F and Γ by corresponding hydrodynamic force
and torque [44] (see also [52] for more details):

F · x̂ = γx ẋ , (1)

Γ · ŷ + R̃ θ F · ẑ = −γθ θ̇ , (2)

where the dot means time derivative. R̃ is a length given
by R̃ = Rk−4/3

(
k2 − 1

)
, γx and γθ are Stokes drag coeffi-

cients for the motion of the ellipsoid, in translation along x̂
and in rotation around ŷ, respectively. Both are functions
of R and k, and can be found in [53,54]. The second term
in eq. (2) is the torque exerted by the RP force around the
point of contact of the particle to the top surface. Note
that the above equations only hold in the limit of small
particle tilt angle (θ 	 π/2).

It is instructive to re-write eqs. (1), (2) using dimen-
sionless quantities. Denoting c the velocity of light in
vacuum, we define: x̄ = x/R, z̄ = z/R, F̄i = cFi/P ,
Γ̄ = cΓ/PR, γ̄x = γx/ηR, γ̄z = γz/ηR, γ̄θ = γθ/ηR3,
t̄ = t/τ with τ = cηR2/P . Note that the force and torque

are proportional to the laser power but the correspond-
ing dimensionless F̄i and Γ̄ are independent of P . The
dynamical equations now read

F̄x = γ̄x
dx̄

dt̄
, (3)

Γ̄ + R̃θF̄z = −γ̄θ
dθ

dt̄
. (4)

From the structure of eqs. (3), (4), the solution can be ex-
pressed as: x̄ = X(t̄), θ = Θ(t̄). We see that the amplitude
of the oscillations does not depend on the laser power,
which is in line with what we experimentally observed.
The power parameter only intervenes through the charac-
teristic time τ . Increasing P only amounts to decreasing
the period of oscillations.

Considering ω0 = 1.3μm, the simulation successfully
reproduces the kind of bifurcation observed in experi-
ments: short ellipsoids (k < kC) get statically aligned
on the beam axis, while longer ones oscillate in a peri-
odic manner. Note that the 2-dimensional representation
makes sense both for prolate (k > 1) and oblate particles
(k < 1) through the k → 1/k transformation. Thus the
simulation predicts both types of bifurcation, for prolate
particles (k > kC) and oblate ones (k < kC). The value of
kC (≈ 4.0 for an S-type polarization, i.e. parallel to the
plane of incidence) departs from the experimental result
(≈ 3.0), but the simulation may be felt as successful as it
only pretends to offer qualitative results.

Examples of F (x, θ) and Γ (x, θ) maps are displayed in
fig. 20, for k slightly above the bifurcation threshold.

Our goal, in what follows, is to get some physical in-
sight into the mechanism that makes ellipsoidal particles
dance around the beam axis. In practice, we want to spot
the main features of the force and torque maps that deter-
mine sustained oscillations. For illustration, we examine in
fig. 20 a situation close to the threshold for oscillation (S
polarization). Blurring out irrelevant details (see S4), we
identify a few main features of the maps. These features
can be gathered into the picture shown in fig. 21. Essen-
tially the torque function Γ (x, θ) reduces to a couple of
positive and negative poles, while the force F (x, θ) has a
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Fig. 20. Computed F (x, θ) and Γ (x, θ) maps for a collimated
beam and aspect ratio k = 4.1 > kC , with kC = 4.085 (S
polarization) and beam radius ω0 = 1.3 μm.

4-pole structure. This overall 6-pole structure forms the
basis of the model presented below. Note that the optical
force tends to bring the particle back on axis (x = 0) only
for small tilt angles (θ ≈ 0). Conversely, the force becomes
repulsive when the tilt increases. In this case the particle
is expelled out of the axis, but the torque has a restor-
ing effect in bringing the particle back to vertical. This
change in F (x, θ) together with the action of the torque
is the source of the oscillatory response of the particle.

Equations corresponding to the sketch of fig. 21 may
be written as

G(x)G(θ − 1) − G(x)G(θ + 1)
−G(x − 1)G(θ) + G(x + 1)G(θ) = ẋ , (5)

A [G(θ + u)G(x − t) − G(θ − u)G(x + t)] = −θ̇ , (6)

where G(x) may be defined as a simple Gauss function
(only the bell shape of the function is important). (0,±1)
and (±1, 0) are the coordinates of the force poles. (t,−u)
and (−t, u) are the coordinates of the torque poles, with
t ≥ 1 and 0 < u < 1.

Fig. 21. 4-pole force/2-pole torque model of F (x, θ) and
Γ (x, θ) functions. Graphical codes are defined in the panel on
the right.

A is the control parameter of the dynamical system.
Physically, A represents the amplitude of the torque,
which, as we saw, increases with the aspect ratio k. Lin-
earization of eqs. (5), (6) near (0, 0) yields the Jacobian
matrix J

J = 4
[ −e−1 e−1

−At e−(t2+u2) Aue−(t2+u2)

]
. (7)

J may be viewed as the “rigidity matrix” of the sys-
tem [43]. The off-diagonal elements of J represent the cou-
pling between optical force and torque. Note that the ma-
trix is not symmetrical (Jθx �= Jxθ), as a consequence of
the non-conservative character of the optical forces [43].

For small values of the control parameter (A < AC ,
see below), corresponding to weakly elongated ellipsoids,
(0, 0) is a stable fixed point of eqs. (5), (6). The particle
is stably trapped on the beam axis (x = 0), in vertical
configuration (θ = 0)1.

We find that linear stability is lost when A reaches
the threshold value AC = u−1et2+u2−1. There, the sys-
tem bifurcates from spiral stability to spiral instability.
Non-linearities in F (x, θ) and Γ (x, θ) functions then make
the trajectory saturate onto a limit cycle whose ampli-
tude increases with A. Below (fig. 22) we show results
from numerical resolution of the above dynamical system,
obtained by a fourth-order Runge-Kutta integration. We
show examples with (t = 1, u = 0.5). With these values,
the torque poles have same abscissas as those of the hori-
zontal force dipole. We checked that this case had nothing
special by testing with other values (t > 1, u �= 0.5). Com-
putation time considerably increases with t, but we find
the same trends (bifurcation and limit cycles) in all cases.

Summarizing, the 4-pole force/2-pole torque model,
represented by eqs. (5), (6), produces the kind of bifur-
cation that has emerged from the simulation. The key pa-
rameter that drives the bifurcation is the amplitude of the
torque, represented by the A parameter in eq. (6). Note
that the instability, and then the onset of oscillations, only

1 To be complete, eqs. (5), (6) should include a random
(Langevin) force, to account for thermal noise. The latter will
make the ellipsoid undergo Brownian excursions in position
and tilt angle with specific statistical properties [43].
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Fig. 22. Trajectories obtained by integration of eqs. (5), (6),
below (a) and above the transition (b). Here t = 1, u = 0.5.

exists for finite values of u. Coming back to maps (fig. 20),
a necessary condition for the system to oscillate is that the
torque poles have to be shifted from the force poles. Oth-
erwise stated, the force and the torque change their signs
at different positions in (x, θ). We refer the readers to a
detailed discussion on this issue in our Part II article [52].

In the above pole model, the bifurcation is continuous
(of super-critical Hopf type), meaning that the extent of
the limit cycle grows continuously starting from zero at
A = AC . The simulation instead indicates a discontinuous
transition, with possibly coexisting static and oscillating
states above AC [44] (see also Part II [52]). However the
difference is not essential as it may be explained if one
takes into account fine features of the force-torque maps
near (0, 0), which are not present in fig. 21; see S4 for a
detailed justification.

5 Discussion and concluding remarks

We have described the mechanical effects of a laser beam
on large size (up to several 10 μm in length) ellipsoidal
polystyrene particles in water. In our experiments, the
beam was moderately focused, meaning that beam diffrac-
tion was weak on the scale of the particles. We observed
that particles that were not far from spherical, namely
prolate ellipsoids with k < 3 or oblate ones with k > 0.33,

would get radially trapped on the beam axis, with their
long side lying parallel to the beam. Conversely particles
sufficiently far from spherical, i.e. elongate (k > 3) or
flat (k < 0.33), would not be trapped or repelled from
the laser beam, but would rather undergo sustained os-
cillations. Importantly the oscillations were observed in
general, be the particle in bulk water, in a simple levita-
tion scheme, or in contact with an interface. Tests with
fluid (water-oil, water-air) or solid (water-glass) interfaces
did not reveal qualitative differences, as oscillations were
observed in all cases.

Referring to basic principles of mechanical effects of
light on matter, particularly the non-conservative charac-
ter of optical forces [42,43], the existence of the oscillations
does not come as a surprise, since nothing imposes the par-
ticle to come to a static equilibrium inside (as in optical
trapping) or outside (simple repulsion) of the beam. The
benefit of the experiments with the PS ellipsoids is their
simplicity to illustrate the fact that dynamical equilibria
should be encountered in certain experimental conditions.

Based on our observations and a recent simulation in
2 dimensions, we proposed a qualitative model to under-
stand why the particles oscillate. The simulation indicates
that the oscillations originate from the structure of the
optical force and torque maps, and that the torque am-
plitude A is the bifurcation control parameter. In general,
tilting the particle results in the particle being expelled
out of the beam, and pushing the particle off-axis make
it rotate in a way that worsens the initial tilt in θ. Thus
the force-torque coupling, represented by the off-diagonal
terms in J , has a destabilizing effect, while the diagonal
terms are stabilizing. The amplitude of the torque rules
the competition between both tendencies. For moderate k
(< 4 in S polarization), the torque is weak and the parti-
cle is axially trapped in (x = 0, θ = 0) configuration; while
for high k the particle is expelled out of the beam. In the
latter case the instability saturates due to the nonlinear
forms of F (x, θ) and Γ (x, θ) functions, resulting in cyclic
motion of the particle.

The above results from the simulation, as we said, have
been limited to a parallel beam and to one particular value
of the beam diameter. In spite of the intrinsic limitation of
the model (ray-optics and dimension 2), it is worth explor-
ing the effects of changing the beam parameters, namely
ω0 and the beam divergence. This forthcoming work, the
matter of a second part article [52], should help us under-
stand some of the observations reported in subsect. 3.3,
and may be useful in predicting anisotropic particles be-
haviours in high aperture beams, such as used in optical
tweezers geometries.

In experimental records and in the model we limited
the description of the system to a couple of coordinates,
namely x and θ. Strictly speaking, the physical system is
2d only if the particle is axisymmetrical, and if the parti-
cle and laser beam symmetry axes are coplanar (providing
cylindrical symmetry to the whole system). In many cases,
the real system did not meet these conditions, and then
was 3d, with a corresponding 5-dimensional configuration
space. Indeed a large part of the data displayed in fig. 15
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corresponds to 3d systems. This may be the reason why
domains corresponding to different states in fig. 15 slightly
overlap, instead of having neat transition lines. In spite of
this complication, the diagram makes a very clear distinc-
tion between static and oscillating states. In this context
the 2d model is sufficient as a minimal basis to understand
the origin of oscillations.

Recall that we have ignored the effects of Brownian
motion in the model and the simulations. Thermal noise is
visible in experiments as very small random excursions of
particles. As thermal excursions are much smaller than op-
tically driven oscillations, we believe that they do not have
a strong influence on the observed bifurcations. Neverthe-
less thermal fluctuations may play a role in destabilizing
the on-axis configuration above kC . This may explain why
coexistence of static and oscillating states is not observed
in experiments up to now.

As a final remark, we note that the simulation, being
limited to dimension 2, misses some of the experimen-
tal observations that clearly indicate 3-dimensional mo-
tion in certain cases with non-axisymmetrical particles.
A further limitation lies in the fact that we only consid-
ered 2 variables (x and θ), making the dynamical sys-
tem 2-dimensional. Consequently, limit cycles that come
out of the computations can only be periodic [55,56]. The
model is then unable to account for irregular signals such
in figs. 12, 14, 17, 18. This limitation calls for a generali-
sation of the simulation in 3 dimensions.
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