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Abstract. We investigated the formation of a contact between a smooth sphere of elastomer and a micro-
patterned elastomer substrate. We focussed our attention on the transition between a contact only estab-
lished at the top of the pillars, and a mixed contact with a central zone of full contact surrounded by a
top contact corona, which was observed when the normal load was increased. The full contact zone always
nucleated with a finite radius, and the transition appears to be a first-order transition, with a hysteresis
due to the creation of an adhesive zone between the pillars. We propose to include the effect of the new
inter-pillar adhesion to produce a realistic treatment of the mechanics of these complex contacts. This new
approach quantitatively accounts for the evolution of the observed jump in the radius of the full contact
with the geometrical parameters of the pattern.

1 Introduction

When two solids are put into contact, the roughness of the
two contacting surfaces plays a crucial role in determining
whether adhesion will develop. Roughness of the two con-
tacting surfaces prevents development of full intimate con-
tact between the two solids, despite the presence of attrac-
tive interactions (van der Waals forces). This phenomenon
has drastic consequences for a number of important appli-
cations in which one wishes to control adhesion or friction.
It is indeed intuitively obvious that the strength of an in-
terface should depend on the actual surface of contact be-
tween the two contacting solids, simply because this sur-
face of contact represents the surface on which molecular
interactions can act. Since solids are always deformable,
the roughness asperities can deform under an applied nor-
mal load, which implies that this resultant actual surface
of contact should depend on the applied load. Detailed
mechanical models have been developed to predict this de-
pendence in the case of a single contact between a smooth
sphere and a smooth plane, either for the case of no adhe-
sion forces (Hertz description) or for the more realistic sit-
uation where adhesive contact is present (JKR contact).
In both cases, the size of the contact is predicted (and
observed) to increase with the applied normal load in a
non-linear manner. This is why the Amontons-Coulomb’s
friction law, which points out that the friction force is
proportional to the load, independently of the apparent
contact area between two solids [1,2] has long remained
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a kind of unexplained paradox, until Bowden and Tabor [3]
proposed that the Amontons-Coulomb’s law was reflecting
the role played by the asperities of the two solid surfaces.
Due to roughness, the solids are only contacting on top
of the asperities, with a resulting real contact area Areal

much smaller than the apparent one, Aapp. More specifi-
cally in the case of metallic surfaces, they proposed that
due to the concentration of the normal load on these con-
tacting asperities, they undergo plastic deformation which
fixes the value of the real contact area [4], potentially lead-
ing to a real surface of contact proportional to the normal
load, and thus to a friction force that is itself proportional
to the normal load.

The exact evolution of the real area of contact with
the normal load is however a delicate question, involving
the mechanical properties of the solids (close to their re-
spective surfaces), the exact geometry of the two surfaces,
and the adhesion between the solids. Building precise pre-
dictions for the evolution of the real contact area between
two solids as a function of the applied normal load thus
appears as a major but complex issue, which remains not
fully elucidated, despite significant progress made over the
past 50 or 60 years.

Following the pioneering work by Bowden and Tabor, a
lot of experimental and numerical studies have attempted
to quantify and model the proportionality between the
load and the real area of contact, starting from the a pri-
ori simpler case of elastic asperities, and progressively ex-
ploring more complex mechanical behaviours (plastic de-
formations). Hertz [5] first modelled the adhesiveless and
frictionless contact between a smooth elastic sphere and
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a smooth elastic planar solid (a model mono-asperity con-
tact) and predicted a contact area increasing with the
squeezing force FN as A ∼ F

2/3
N . The simplest model of

randomly rough surfaces with spherical bumps of identi-
cal radius of curvature R and equal heights is known as
the apparent paradox of elastic friction. It states that the
real area of contact between rough surfaces should increase
with the load, obeying a scaling F

2/3
N . This apparent para-

dox of friction in the case of elastic solids without plastic
flows has been first understood by Archard [6], followed
by Greenwood and Williamson [7] using a more sophisti-
cated statistical models of asperities. Valid models in the
case where Aapp � Areal have been recently reviewed by
Zavarise et al. [8]. A different approach has been devel-
oped by Persson, taking into account the elastic coupling
between asperities inside the contact region, allowing the
contact between randomly rough surfaces up to full con-
tact to be described [9,10].

The contact between elastic adhesive solids is more
complex. An elastic sphere in adhesive contact with a
flat substrate was first modelled by Johnson, Kendall and
Roberts [11,12] who calculated the evolution of the con-
tact area as a function of the normal load (a model mono-
asperity adhesive contact). The so-called JKR theory has
later been extended to random rough surfaces [13–16] ei-
ther to understand adhesion or friction behaviours. The
question of the contact formation between a sphere and
a wavy surface has been initially studied by Johnson [17]
but most of the effort has been carried out in the field of
biomimetic surfaces, in order to control and predict ad-
hesion forces. It has been shown that dividing a surface
into sets of parallel soft asperities can significantly increase
adhesion if the aspect ratio (height over diameter) of the
asperities is high enough to increase its compliance, as
it is the case for biomimetic surfaces based on fibrillar
structures [18–25]. In fact, fibrillar structures have, a pri-
ori, two antagonistic effects: they are more compliant than
the bulk solid, and can adapt to the surface roughness of
the substrate on which they are put into contact, a factor
which tends to increase adhesion, but they intrinsically
produce a smaller area of contact than a fully adaptable
continuous material able to produce a full real contact
with the substrate, a factor which tends to decrease adhe-
sion. This has been clearly shown for wrinkled surfaces: to
modulate adhesion or friction properties, a gain in com-
pliance has been achieved by using soft elastomers and
changing the contact area by forming either top or full
contact [26–28]. For top contact, a decrease of adhesion
has been observed, due to the decrease of real contact
area, whereas full contact was conducive to an increase in
adhesion.

In the present study, we take advantage of recent ad-
vances in the understanding of the contact mechanics be-
tween model micro-patterned surfaces to experimentally
analyse and quantify the role of the adhesion which de-
velops between the fibrillar structures at sufficiently large
applied normal load, in the formation of contact. We chose
small cylindrical fibrils with an aspect ratio smaller than
one, to avoid their bending or buckling. Such small fibrils

are called pillars in this paper. We used regular arrays of
elastic micro-pillars, as previously used by Wu et al. [29],
Verneuil et al. [30] and later by Degrandi et al. [31], in
contact with a millimetric smooth elastic sphere. A com-
mon observation of these authors is that tall pillars can
give a partial contact, with the smooth surface only touch-
ing the top of the pillars. Due to adhesion, short pillars
are not able to prevent the two surfaces from establish-
ing a full contact, which occurs at least in the central
part of the apparent contact area. This kind of contact
is called mixed contact (a central full contact area sur-
rounded with a corona of top contact). A transition from
only top contact to mixed contact is observed either by
decreasing the height of the pillars at fixed load, as investi-
gated by Verneuil et al. [30], or, at a sufficient height of the
pillar, when increasing the applied normal load, as shown
by Degrandi-Contraires et al. [31]. More precisely, Jin et
al.predicted and observed experimentally the dependence
of the threshold normal load characterising the transition
from top to mixed contact on the pattern geometry and
on the elastic properties of the materials in contact. Fi-
nally, Wu et al. [29] have shown that the precise fraction
of full contact within the mixed contact area allows one to
tune the friction properties of these micro-patterned con-
tacts. On rippled elastic surface, Jin et al. [32] observed
a similar evolution of the nature of the contact, but with
a continuous transition from partial to full contact as a
result of the 2D geometry.

A quite surprising result of [31] is that, when crossing
the transition from partial to full contact, the full contact
nucleates and suddenly jumps to a finite radius of full con-
tact. This implies the onset of new adhesive energy con-
tributions, which develop without affecting the apparent
contact area. In the present article, after a rapid descrip-
tion of the details of the experimental setup and of the
materials, we shall present a series of experimental data
exploring the development of the full contact when cross-
ing the threshold load. We propose a mechanical model of
these complex contacts, based on a balance between ad-
hesion and elastic deformation. This new approach quan-
titatively accounts for the jump in the radius of the full
contact at the transition, and also for the further increase
of this radius when further increasing the applied normal
load. This description can thus be used to identify the per-
tinent parameters controlling this transition. This opens
the route for the creation of versatile materials with selec-
tive adhesion and friction properties.

2 Materials and methods

2.1 Patterned surfaces

The micropatterned solid surfaces were replicated by
molding, by using a silicon wafer with an etched resist
layer as a mold. This mold was obtained through standard
electron beam lithography techniques described in [33].
PDMS replicas were obtained by pouring in this mold
a millimetre thick layer of silicone elastomer precursor
mixed with a crosslinker, at a 10:1 ratio (Sylgard 184,
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Fig. 1. (a): Schematic view of the sphere-plan JKR geometry.
The substrate is linked to a force sensor and the lens is linked
to a vertical motorized linear stage. The contact is observed
through a long working distance microscope and monitored
with a video camera (b): Top view of the contact between the
lens and the patterned substrate for “top contact” (left) and
“mixed contact” (right) just below (left) and just above (right)
the transition.

Dow Corning), followed by a 24 h curing at 50 ◦C, and fi-
nally the crosslinked PDMS elastomer was peeled off from
the mold. The elastic Young modulus of these substrates,
Es = 1.8 ± 0.1MPa, has been measured through classical
JKR test on a smooth part of the substrate [12,34]. All
data presented in this paper have been obtained with pat-
terned surfaces made of regular hexagonal arrays of cylin-
drical pillars. The variable geometrical characteristics of
such patterns included the height and the diameter of the
pillars (respectively h and d), and their spacing that we
have characterised by the mesh size of the array, i. The
investigated diameters of pillars, d, were 4 μm and 6μm.
The mesh size, i, was varied in the range from 12μm to
57μm, and the height of the pillars, h, in the range from
0.5μm to 3.5μm.

2.2 Lens fabrication

The same elastomer was used to prepare small hemi-
spherical lenses. These convex micro-lenses were obtained
by the now classical method introduced by Whitesides and
Chaudhury [35]: droplets of the reactive mixture were de-
posited on a glass slide covered by a SAM of perfluorinated
silane to obtain a partially wetting substrate for PDMS.
The same curing procedures as for the patterned sub-
strates were applied to the droplets. The JKR test allowed
us to measure their Young modulus as El = 1.8±0.1MPa,
similar to that of the patterned substrates.

The typical JKR geometry used to investigate the for-
mation of the contact is schematically presented in fig. 1a,
while a typical view of the contact is shown in fig. 1b, just
below (left) and just above (right) the transition from top
to mixed contact.

3 Experimental results

The contact, schematically presented in fig. 1(a), between
a smooth elastomer lens and series of elastomer substrates

patterned with regular hexagonal arrays of cylindrical pil-
lars has been analysed experimentally in a lab-developed
JKR test apparatus, described in detail in [34]. The evolu-
tion of the different contact radii (apparent and full con-
tact) versus the applied normal load F , was continuously
monitored though video microscopy.

As illustrated in fig. 1b, and as was reported in [31],
contact of two different natures could be observed, de-
pending on the applied load. For sufficiently small normal
loads, “top contact” occurs, with the lens only touching
the patterned substrate at the top of the pillars. The pil-
lars thus remain fully visible all over the contact zone,
as a result of air trapped in between the lens and the
substrate at the base of the pillars, which gives a good
optical contrast due to the large index of refraction mis-
match between air and the silicone elastomer. At a given
threshold load, named Fc, the nature of the contact sud-
denly changes with the rapid development, at a fixed load
and fixed radius of apparent contact, of a contrasting cen-
tral area of radius af . This central area, the so-called “full
contact” area, corresponds to a supplementary contact be-
tween pillars, which then become hardly visible, because
there is no air trapped between the pillars and the lens,
and thus optical contrast is no longer present. This area
of “full contact” remains always surrounded by a corona
of “top contact” indicating that at the periphery of the
apparent contact, the local force experienced by the pil-
lars is lower than Fc. When the load is increased above
Fc, both a and af continue to increase smoothly.

The evolutions of the full contact radius af (circle sym-
bols) and of the overall apparent contact radius a (cross
symbols), are reported in fig. 2 for different values of the
fraction of surface occupied by the pillars, which we have
characterised with the parameter φ. For the hexagonal ge-
ometry used here

φ =
(
π/2

√
3
)

(d/i)2. (1)

For the full contact radius, af , all curves in fig. 2 exhib-
ited a jump from zero to a finite value when crossing the
threshold load. This clear jump allowed one to precisely
determine the threshold load Fc. We note in fig. 2 that
the apparent radius of contact, a, does not change when
the full contact nucleates. This may seems surprising with
regard to the large new adhesion contribution associated
with the newly developed large surface of contact.

Data in fig. 2 clearly showed that the amplitude of the
jump for af increases when φ increases, i.e. when the mesh
size decreases at a fixed diameter of the pillars.

The contact formation and this abrupt jump of the full
contact radius have to be understood in detail in order to
use patterning as a tool to control friction and adhesion.

More generally, the smooth/micro-patterned silicone
elastomer system used here appeared to be a quite con-
venient model system to investigate the relative roles of
adhesion and elasticity on the formation of rough con-
tacts: first, only elastic deformations are present, second
the PDMS/PDMS adhesion energy is well known, and
third, the geometrical parameters of the pattern can be
varied in a wide and controlled range.
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Fig. 2. Experimental evolution of the radius of contact as a
function of the vertical force for different surface densities of
pillars ϕ. The cross symbols correspond to the evolution of the
apparent contact radius a, the circles correspond to the full
contact radius af .

Compared to a smooth contact, the supplementary
elastic energy associated with the compression of the pil-
lars and with the deformations of both the underlying sub-
strate and the lens between the pillars, is unfavorable for
the creation of a full contact. On the contrary, the addi-
tional adhesion, which develops between the pillars inside
the zone of full contact tends to pull lens and substrate
into more intimate contact, and thus tends to increase the
radius of full contact as soon as the threshold is reached.
The aim of the analysis that we present below is to model
the balance between the corresponding elastic and adhe-
sion energies, focusing on the prediction of the amplitude
of the jump in the radius of full contact at threshold load-
ing.

4 Mechanical modelling of the
patterned/smooth contact:

Let us first remind the reader of the simplest model that
we have developed in [33] to predict the threshold force for
the onset of full contact when an elastomer lens is pushed
into contact with a micro-patterned elastomer substrate.
The critical force can be deduced from a deformation cri-
terion: to nucleate the full contact, lens and substrate need
to touch in between the pillars. This means that the al-
gebraic sum of the deformations of the lens, the substrate
and the central pillar (fig. 3) which is compressed and sup-
ports the local maximum stress, is equal to the height of
the pillars, h.

More precisely, the local deformations of both lens and
substrate (respectively ξc

s and ξc
l ) at the centre of the con-

tact can be expressed as a function of the local stress σ0:
they correspond to indentation profiles by the cylindrical
pillar [12,32]

ξc
s,l =

3d

2πEs,l
σ0 · fc(φ). (2a)

The correcting function, fc(φ), previously introduced
in [31], takes into account the perturbation of the defor-
mation field associated to coupling between pillars when
they are close enough, and goes to one for pillars separated
at large distances.

The compression of the central pillar is also given in a
straightforward manner by [12]

δ =
σ0h

Es
. (2b)

The deformation criterion can thus be expressed as

ξc
l + ξc

s = h − δ. (2c)

By substituting into eq. (2c) the expressions of the defor-
mations versus the local stress (eqs. (2a) and (2b)) one
can express the threshold stress σc as a function of the ge-
ometric and elastic parameters of the system. Taking into
account Es = El = E and assuming non-coupled pillars
(fc(φ) = 1), this threshold stress is thus simply

σ0 = hE

(
3d

π
+ h

)−1

≡ σc. (3)

Using the classical expression for the normal stress at the
centre of a Hertz profile: σ0 = 1/(φπ)(FK2/R2)1/3, where
K = 4E/6(1− ν2) and ν is the Poisson ratio of the mate-
rials, that yielded the critical force. The φ factor took into
account the concentration of the normal load at the top of
the pillars. We have shown that this criterion was indeed
able to correctly account for the observed evolutions of
the threshold force versus the geometrical parameters of
the pattern [31]. Alone, it did not however allow one to
locate the external limit of the zone of full contact, even if
it appears plausible to assume that at the limit of the zone
of full contact, af , the deformation criterion (2c) should
hold. To specify af from arguments similar to those used
to define the threshold stress, an additional assumption on
the stress profile was required. This was indeed a delicate
point, since the development of the full contact zone, and
the additional corresponding adhesion, may deeply affect
the stress profile inside the contact zone. Assuming that a
Hertz stress profile continued to apply, a simple prediction
for the evolution of the radius of full contact with applied
load could be made, but this prediction did not account
for the observed jump in af at the threshold loading. The
argument is as follows: if the normal load was progres-
sively increased above the threshold, the critical stress for
the onset of full contact will be achieved at a larger ra-
dius, af . Using the normal stress distribution in a Hertz

contact, σ(r) = σ0(F )(1 − r2

a2 )
1/2

, and substituting that
σ(af ) = σc one obtains

a2
f

a2
= 1 −

(
F

Fc

) 2
3

. (4)

This gave a smooth continuous increase of the radius of
full contact from zero, and does not account for the nu-
cleation of the full contact zone with a finite radius that
was observed at threshold loading.
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Fig. 3. Left: Scanning electron microscopy of a typical patterned surface. The area of the white portion of hexagon can be

easily calculated: S = 3
√

3
2

i2(1 − φ). Right: Schematic representation of the lens, substrate and pillar when they are loaded at
threshold, so that lens and substrate just touch. The definition of the different deformations δ, ξl and ξs is indicated, along with
ρ, the local radius of curvature of the indentation profile.

We propose here to modify the deformation criterion
describing the limit of the area of full contact, in order to
take into account the additional adhesion that develops
between the pillars when the full contact develops above
the threshold.

As soon as lens and substrate touch between the pil-
lars, the adhesion associated with the newly created sur-
face of contact tends to further close the contact, and
therefore will exert an additional compression at the in-
terface. Experimentally, no change was found in the evo-
lution of the apparent radius of contact, a when crossing
the transition [31] as shown in fig. 2. This is a strong in-
dication that the supplementary adhesion energy gained
when forming the new full contact has been locally con-
verted into other energies contributions, elastic energy and
dissipation losses. We know from the investigations of the
formation of the contact in the case of PDMS micro-lens
on smooth PDMS, that the dissipation losses are not dom-
inant, so that the balance between elastic energy and ad-
hesion energy leads to a correct determination of the ther-
modynamic wok of adhesion for this PDMS/PDMS Sys-
tem [34]. We thus chose, in a first approximation, to omit
the effects of dissipation.

Two elastic contributions corresponding to two
“springs” can a priori be identified: a supplementary com-
pression of the pillars inside the full contact zone (a modi-
fication of δ resulting from the new adhesion, that we call
δadh) and additional indentations of the inter-pillar regions
of the sphere and the substrate (an extra ξadh) which are
squeezed against each other due to the adhesion terms.
The effect is cumulative, and every pillar and inter-pillar
zone having passed the transition can contribute to an in-
crease in the local deformation applied to the following
pillars.

For the hexagonal array used in the present experi-
ments, the additional adhesion energy for one pillar, Uad,
is related to the work of adhesion W on the freshly created
surface (fig. 3)

Uad =

(
3
√

3
2

i2 − 3π

4
d2

)
W =

3
√

3
2

i2(1 − φ)W. (5)

This adhesion energy will be distributed over the two
springs corresponding, respectively, to the compression of
pillars and to the supplementary elastic deformations of

the sphere and of the substrate. This last elastic contri-
bution is not at all easy to evaluate. It corresponds to
the formation of an adhesive contact in the interpillar
zone, which is curved, not axisymmetric, and quite dif-
ferent from a simple JKR contact, due to the constraints
imposed locally by the yet formed adhesive contacts on
top of the pillars. Far from the edge of a pillar, the radius
of curvature, ρ, just below the threshold loading, would be
the local curvature of the indentation profile of an elastic
solid by a flat punch, with ρ larger than R (fig. 3). If we
were dealing with a simple JKR smooth elastic contact
with a lens of radius ρ, an indentation in the micrometric
range would produce a contact with a radius larger than
a, and thus much larger than i, the inter-pillar distance. It
is then plausible to assume, in a first approximation, that
what prevents the development of a large contact is mainly
the elastic over-compression of the pillars, δad, and not the
elastic deformations inside the inter-pillar zone. The ad-
ditional elastic energy of compression of the pillars could
be written as

Uel =
πEd2

8h
δ2
ad. (6)

Balancing eqs. (5) and (6) and using eq. (1) for the de-
pendence of φ on diameter and spacing of the pillars, led
to δad

δad =

√
Wh

E

(
1 − φ

φ

)
. (7)

The deformation criterion of eq. (2c) then became

ξl(af ) + ξs(af ) + δ(af ) + δadh = h, (8)

Using the expressions for ξl,s and δ (eqs. (2a) and (2b)),
and using a Hertz stress profile, which is valid at the load-
ing threshold, with σ0 = σc, we obtain

σc

√
1 −

(af

a

)2
(

3d

πE
+

h

E

)
= h − δadh. (9)

This can be simplified using eq. (3)

af

a
=

√
1 − (h − δad)2

h2
. (10)
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Fig. 4. Map representation of the evolutions of the amplitude
A versus the height h of the pillars and the areal density ϕ,
as predicted by eq. (11). The full line corresponds to fig. 5
(upper part) where experiments have been carried out with
h = 2.2 μm and varying φ. The dotted line corresponds to
fig. 5 (lower part) where experiments have been carried out
with φ = 0.1 and varying h.

Combining eqs. (10) and (7) gave the variation of the am-
plitude of the jump in the radius of full contact at thresh-
old, A, with the geometrical parameters of the pattern, the
elastic modulus and the thermodynamic work of adhesion

A ≡ af

a
=

√√√√ W

Eh

(
φ − 1

φ

)
+ 2

√
W

Eh

(
1 − φ

φ

)
, (11)

Figure 4 gave a map of the evolution of the ampli-
tude of the jump in the radius of full contact at thresh-
old (colour code on the right) versus φ and h, as deduced
from eq. (11). This map showed that φ and h have approx-
imately the same effect on A (almost symmetrical reparti-
tion of colors around h = 10−5φ which correspond to the
diagonal of the map). This result could also be deduced
from eq. (11), taking the limit for φ � 1 : A then became
proportional to (hφ)−1.

Comparison to experiments
The predictions of eq. (11) were compared to experiments
in fig. 5(a) for the dependence versus the surface density
of pillars and in fig. 5(b) for the height dependence. The
smallest φ value corresponded to a large separation be-
tween pillars (i = 57μm). In this case, the critical force
was low, the number of pillars under the contact became
small, and the mixed contact appeared for a rather small
radius of the apparent contact. A precise value of A then
became difficult to measure, and the uncertainty on A for
the smaller φ is of the same order of magnitude as the
value itself (ΔA ∼ 0.2).

When the density of pillars was increased, the fraction
of the area of full contact at the transition increased as
well, in surprisingly good agreement with the model, with-
out any adjustable parameter. The inclusion of the supple-

Fig. 5. (a) Evolution of the amplitude of the jump in the radius
of full contact, A, at threshold, for two diameters (� d = 6 μm;
• d = 4 μm) for soft elastomer patterned substrates and one di-
ameter (� d = 6 μm) for hard patterned substrates. The lines
correspond to the analytical prediction of eq. (11) for “soft”
contacts and the numerical models for a JKR stress distribu-
tion with coupling for d = 4 μm and d = 6 μm. (b) Experi-
mental and analytical evolution of this amplitude versus the
height for φ = 0.1 for soft contacts.

mentary compression of the pillars associated to adhesion,
as estimated though the balance between adhesion energy
and elastic compression energy in eq. (11), captured well
all the main characteristics of the observed jump in the
radius of full contact.

Limitations of the model
The model leading to eq. (11) relied on several simplifi-
cations that we would now discuss, leaving aside initially
the major and questionable assumption of an elastic con-
tribution inside the new full contact dominated by the
compression of the pillars.

First, we have assumed a Hertz distribution of stress
under the contact, which means that we have neglected the
adhesion at the top of the pillars during the contact for-
mation (hypothesis 1). This assumption has been shown
to be correct in the former evaluation of the threshold of
full contact zone [33]. This weak adhesion at the top of
the pillars could be taken into account using a numerical
model.

A second assumption was to assume that the mechani-
cal elastic coupling between the pillars could be neglected.
Again, taking this coupling between pillars into account
was previously achieved by numerical methods [31,33],
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and could be implemented here with no effect on eq. (11),
because only the overcompression of the pillars was taken
into account in the evaluation of the of elastic en-
ergy (eq. (6)).

The present model should also break down at low φ.
First, the assumption of a Hertz profile with a stress con-
centration at the top of the asperities should no longer
be valid when the number of pillars under the contact be-
comes too small. Second, eq. (11) exhibits an interesting
limit at low φ where A reaches the value A = 1. This
corresponds to

φc ∼ W

W + hE
. (12)

Even if difficult to test experimentally (for the situa-
tions explored in this article (W = 0.046mJ/m2 and
E ∼ 1MPa), φc ∼ 0.013, a low value where the hypoth-
esis of a continuous Hertz profile of stress is not longer
valid) this may indicate a change in contact and adhesive
behaviour at low surface densities of pillars, which should
be examined in more detail.

Numerical calculations
To try to further probe the analysis of the formation of
this complex contact, the evolution of A had been com-
puted numerically for a JKR stress distribution inside the
contact before the threshold, still keeping the estimate of
δad given by eq. (7) and the hypothesis that the stress
profile was kept equal to that of th JKR outside of the
zone of full contact, down to af . In fig. 5(a), the numeri-
cal solutions computed for a JKR stress distribution plus
coupling, and for the two diameters of pillars used in the
experiments, were plotted as the red and green lines, for
d = 4μm and d = 6μm respectively. These numerical
solutions were fully superimposed with the analytical so-
lution for the Hertz stress profile. This reflected the fact
that, when in top contact, the effective adhesion energy
was weakened compared to full contact, as only the tops
of the pillars are involved in the contact.

Case of hard pillars
Even if eq. (11) fully accounted for the experimental data,
without any adjustable parameters, it relied on a question-
able hypothesis. We have assumed that the adhesion en-
ergy gained inside the zone of full contact was essentially
converted into compression elastic energy of the pillars.
We have totally neglected the elastic contributions asso-
ciated to the deformations of the inter-pillar zone, despite
the fact that these deformations are clearly present as the
optical contrast of the pillars is lost in the full contact
zone. We have also neglected potential dissipation terms.
In order to gain some insight in the validity of these as-
sumptions, we have performed some experiments with an
elastomer lens in contact with a much harder patterned
substrate, Araldite 2020 (E ∼ 1GPa) covered with an ir-
reversibly adsorbed PDMS layer in order to keep W iden-
tical to the elastomer/elastomer experiments. In this case,
the pillars were essentially incompressible and, if full con-
tact appears, the corresponding adhesion energy should
only be equilibrated by the deformation of the soft sphere

between the pillars. A transition and the appearance of a
zone of full contact at a given threshold load, along with
a jump in the radius of full contact, were still observed in
this case. The jumps in af appeared significantly smaller
than in the “totally deformable” case, as shown by the
corresponding green full symbols in fig. 5a.

An extension of the present model, taking correctly
into account the elastic deformations of the lens due to
the local closure of the contact between the pillars would
be necessary to account for these experiments, and, in the
fully deformable case, to more firmly justify eq. (11). This
cannot be done analytically, because of the complex local
deformed profiles of lens and substrate between the pillars.
We are presently implementing such an approach, based
on finite element analysis.

5 Conclusions

We have presented a series of experimental data for the
evolution of the “full contact” radius when a patterned
substrate is pushed into contact with a smooth elastomer
lens in a JKR experiment. This work is the continuation of
a previous paper, in which we reported and analysed how
the critical load for the nucleation of a zone of full contact
in the centre of the “top” contact area, was depending on
the geometrical parameters of the pattern. The present
work focused on the loading phase, was centred on the in-
vestigations and analysis of the evolution of the observed
jump in the radius of full contact, which develops sud-
denly at the critical load, as a function of the mesh size
i of the pattern, the diameter d of the pillars, and their
height h. Extending our previous analysis describing the
threshold critical load between top and mixed contacts,
we have, analytically and numerically modelled, for the
first time, the experimental data, taking into account the
balance between adhesion and elastic energies inside the
zone of full contact with some approximations. Indeed, the
adhesion, which develops inside the zone of full contact as
soon as the threshold load is attained tends to close the
contact between the pillars, further compressing the pil-
lars and thus pushing further past the limit whereby the
zone of full contact appears. We showed that this addi-
tional adhesion is responsible for the sudden increase in
the radius of full contact, while the radius of apparent
contact remained constant. Even though approximations
were used, the present analysis correctly accounts for all
obtained data, without any adjustable parameter, and re-
mained accurate even with variations in the density and
height of the pillars.

This analysis demonstrated that apart from the height
h, which has been usually considered as the parameter
affecting the transition between top and mixed contact for
a given applied load, φ, the surface density of pillars, can
be used to adjust and control the nature of the contact.

We wanted to emphasise that the development of the
central full contact zone occurred without any change in
the radius of the corona of the top contact. This may
seem surprising, as the development of the new inter-pillar
contacts corresponds to a significant increase of adhesion



Page 8 of 8 Eur. Phys. J. E (2015) 38: 130

inside the full contact zone. This new adhesion, even if
in part balanced against elasticity, should strongly modify
the stress distribution under the contact, but this does not
appear in the load versus radius curve. We wanted to point
out that this behaviour is quite similar to what has been
reported in a number of JKR experiments where adhesion
was enabled to change under the contact, due to chemical
reaction or to a progressive interdigitation between grafted
polymer chains and the elastomer of the lens [36–39]. In
all these experiments, the development of adhesion under
the yet formed contact did not affect the contact radius,
and was only revealed when unloading was performed.
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