https://doi.org/10.1051/epjap/2009096
Low birefringent magneto-optical waveguides fabricated via organic-inorganic sol-gel process
1
Laboratoire Dispositifs et Instrumentation en Optoélecronique et Microondes – EA3523, Université Jean Monnet, 23 rue Michelon, 42023 Saint-Étienne Cedex 2, France
2
Laboratoire des Liquides Ioniques et Interfaces Chargées – UMR CNRS 7412, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
3
Laboratoire Hubert Curien – UMR CNRS 5516, Université Jean Monnet, 18 rue Benoît Lauras, 42000 Saint-Étienne, France
Corresponding author: fadi.choueikani@univ-st-etienne.fr
Received:
16
December
2008
Accepted:
23
March
2009
Published online:
5
June
2009
This paper is devoted to the study and the characterization of novel magneto-optical waveguides prepared via organic-inorganic sol-gel process. Thin silica/zirconia films doped with magnetic nanoparticles were coated on glass substrate using dip-coating technique. After annealing, samples were UV-treated. Two different techniques were used to measure their properties: m-lines spectroscopy and free space ellipsometry. Results evidence low refractive index waveguides that combine a low modal birefringence (2×10−4) with a Faraday rotation around 15 °/cm (ϕ = 0.1%). The low birefringence is obtained with a soft UV treatment and a graded intrinsic anisotropy is evidenced for films thicker than 5 μm. Therefore, we prove that the organic-inorganic sol-gel approach is very promising to realize magneto-optical waveguides with a non-reciprocal functionality such as TE-TM mode conversion.
PACS: 78.66.Sq – Composite materials / 78.20.Fm – Birefringence / 78.20.Ls – Magneto-optical effects
© EDP Sciences, 2009