https://doi.org/10.1051/epjap/2014140298
Research of carrier mobility in NPD through negative differential susceptance spectra
1
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Singapore-Jiangsu Joint Research Center for Organic/Bio Electronics & Information Displays (COEID), Institute of Advanced Materials (IAM),Nanjing University of Posts and Telecommunications (NUPT), Nanjing
210023, P.R. China
2
College of automation, Nanjing University of Posts and Telecommunications (NUPT), Nanjing
210023, P.R. China
b e-mail: iamchaotang@gmail.com
Received:
16
July
2014
Revised:
21
October
2014
Accepted:
7
November
2014
Published online:
12
December
2014
In this paper, the hole carrier mobility of organic semiconductor N,N′-diphenyl-N,N′bis(1,1′-biphenyl)-4,4′-diamine (NPD) was researched by negative differential susceptance spectra (−ΔB = −w(C − Cgeo) ~ f). Under the condition of space charge limited current (SCLC), through solving the drift current equation and Poisson equation and simulating the spectra −ΔB = −w(C − Cgeo) ~ f, the relationship between the peak of −ΔB = −w(C − Cgeo) ~ f spectra (1/ƒp = τp) and the transfer time of carrier (τdc) could be achieved to be τdc = k × τp. So the hole-only device of ITO/NPD/Ag was fabricated to determine the capacitance spectra, and through which its −ΔB = −w(C − Cgeo) ~ f could be plotted. According to the relationship of τdc = k × τp, where k was determined to be 0.56, the transfer time and further the carrier mobility could be obtained. The carrier mobility depended on the electric field according to Poole-Frenkel model was further investigated in this report.
© EDP Sciences, 2014