https://doi.org/10.1051/epjap/2018170397
Regular Article
Does Fourier analysis yield reliable amplitudes of quantum oscillations?
1
Laboratoire National des Champs Magnétiques Intenses, UPR 3228 CNRS, INSA, UGA, UPS, 143 avenue de Rangueil,
31400
Toulouse, France
2
Laboratoire de Physique et Chimie Théoriques, CNRS UMR7019, Université de Lorraine,
Vandoeuvre-lès-Nancy
54506, France
* e-mail: jean-yves.fortin@univ-lorraine.fr
Received:
4
December
2017
Received in final form:
6
July
2018
Accepted:
17
July
2018
Published online: 6 November 2018
Quantum oscillation amplitudes of multiband metals, such as high-Tc superconductors in the normal state, heavy fermions or organic conductors, are generally determined through Fourier analysis of the data even though the oscillatory part of the signal is field dependent. It is demonstrated that the amplitude of a given Fourier component can strongly depend on both the nature of the windowing (either flat, Hahn or Blackman window) and, since oscillations are obtained within a finite field range, the window width. Consequences on the determination of the Fourier amplitudes, hence of the effective masses, are examined in order to determine the conditions for reliable data analysis.
© A. Audouard and J.-Y. Fortin, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.