https://doi.org/10.1051/epjap/2020180287
Regular Article
Bond graph multi-physics modeling of encapsulating materials in power electronic modules★
Laboratoire Génie de Production, LGP, Université de Toulouse, INP-ENIT,
Tarbes, France
* e-mail: baptiste.trajin@enit.fr
Received:
29
September
2018
Received in final form:
19
February
2020
Accepted:
20
February
2020
Published online: 23 April 2020
This paper focuses on multi-physics modeling of encapsulating gels in power electronic modules for transient and steady-state simulation. With the emergence of wide-bandgap semiconductors such as SiC or GaN, operating at a higher temperature than conventional Si power chips, this passive element of the packaging appears as a few studied element sensitive to thermal and mechanical stresses. A thermo-mechanical coupled modeling of the material, based on bond graph representation, is presented. This approach allows to establish, under the same formalism, an analogy between the different physical domains. From this analogy, a multi-physical nonlinear state space representation is built, allowing transient simulation of the thermo-mechanical behavior of the material. This way of modeling and simulating is particularly adapted for a preliminary study during the upstream phases of design of the power electronic modules. It quickly establishes the maximum temperature and mechanical strains experienced by the gel.
© B. Trajin and P.-E. Vidal, EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.