2019 Impact factor 0.630
Applied Physics

EPJ B Colloquium - Hierarchically nanostructured thermoelectric materials: challenges and opportunities for improved power factors

Schematic of a hierarchically nanostructured thermoelectric material consisting of a matrix material with embedded atomic defects, nanoinclusions (NIs), and grain boundaries. Phonons scatter of the defects. Such geometry also provides possibilities for power factor improvements.

The field of thermoelectric materials has undergone a revolutionary transformation over the last couple of decades as a result of the ability to nanostructure and synthesize myriads of materials and their alloys. The ZT figure of merit, which quantifies the performance of a thermoelectric material has more than doubled after decades of inactivity, reaching values larger than two, consistently across materials and temperatures. Central to this, is the drastic reduction in the materials’ thermal conductivity due to the hierarchical scattering of phonons on the purposely included numerous interfaces, boundaries, dislocations, point defects, phases, etc. However, as the thermal conductivity has reached amorphous values, these benefits are reaching their limits. Any further benefits would come from the power factor, namely the product of the electronic conductivity and Seebeck coefficient squared. These quantities need to be maximized, however, they are in general inversely related, which makes power factor improvement a significant challenge.

Read more...

EPJ B Highlight - Investigating optical activity under an external magnetic field

A schematic of a monolayer of black phosphorus under the influence of an external magnetic field. (Liu. C., Wu. F., Jiang. Q., Chen. Y., Yin. C.)

New research reveals that applying a magnetic field to a chiral metamaterial can change the way it polarises light.

Optical activity in chiral molecules has become a hot topic in physics and optics, representing the ability to manipulate the polarized state of light. Understanding how molecules rotate the plane of plane-polarized light has widespread applications, from analytic chemistry to biology and medicine — where it can, for example, be used to detect the amount of sugar in a substance. A new study published in EPJ B by Chengping Yin of the Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Read more...

EPJ B Highlight - Antiferromagnet lattice arrangements influence phase transitions

Antiferromagnets display orderly lattice formations. From https://en.wikipedia.org/wiki/ Antiferromagnetism#/media/ File:Antiferromagnetic_ordering.svg credit Michael Schmid

Calculations involving ‘imaginary’ magnetic fields show how the transitioning behaviours of antiferromagnets are subtly shaped by their lattice arrangements.

Antiferromagnets contain orderly lattices of atoms and molecules, whose magnetic moments are always pointed in exactly opposite directions to those of their neighbours. These materials are driven to transition to other, more disorderly quantum states of matter, or ‘phases,’ by the quantum fluctuations of their atoms and molecules – but so far, the precise nature of this process hasn’t been fully explored. Through new research published in EPJ B, Yoshihiro Nishiyama at Okayama University in Japan has found that the nature of the boundary at which this transition occurs depends on the geometry of an antiferromagnet’s lattice arrangement.

Read more...

EPJ B Highlight - Impurities enhance polymer LED efficiencies

PLED polymers evolve characteristically during operation

Molecular dynamics simulations have shown that the mysteriously high efficiency of polymer LEDs arises from interactions between triplet excitons in their polymer chains, and unpaired electrons in their molecular impurities.

Polymer LEDs (PLEDs) are devices containing single layers of luminescent polymers, sandwiched between two metal electrodes. They produce light as the metal layers inject electrons and holes into the polymer, creating distortions which can combine to form two different types of electron-hole pair: either light-emitting ‘singlets,’ or a non-emitting ‘triplets.’ Previous theories have suggested that the ratio between these two types should be around 1:3, which would produce a light emission efficiency of 25%. However, subsequent experiments showed that the real value can be as high as 83%. In new research published in EPJ B, physicists in China, led by Yadong Wang at Hebei North University, found that this higher-than-expected efficiency can be reached through interactions between triplet excitons, and impurities embedded in the polymer.

Read more...

EPJ B Colloquium - Understanding nonequilibrium scaling laws governing collapse of a polymer

Recent emerging interest in experiments of single-polymer dynamics have encouraged computational physicists to revive their understanding of these phenomena, particularly in the nonequilibrium context. In a Colloquium recently published in EPJB, authors from Institut für Theoretische Physik at the University of Leipzig discuss the currently evolving approaches of investigating the evolution dynamics of homopolymer collapse using computer simulations.

Read more...

EPJ B Highlight - Updating Turing’s model of pattern formation

Turing instabilities driven by asymmetry

Through fresh analysis of a method first proposed by Alan Turing to explain the diversity of natural patterns, a team of researchers offer new explanations of how living systems can order themselves on large scales.

In 1952, Alan Turing published a study which described mathematically how systems composed of many living organisms can form rich and diverse arrays of orderly patterns. He proposed that this ‘self-organisation’ arises from instabilities in un-patterned systems, which can form as different species jostle for space and resources. So far, however, researchers have struggled to reproduce Turing patterns in laboratory conditions, raising serious doubts about its applicability. In a new study published in EPJ B, researchers led by Malbor Asllani at the University of Limerick, Ireland, have revisited Turing’s theory to prove mathematically how instabilities can occur through simple reactions, and in widely varied environmental conditions.

Read more...

EPJ B Highlight - Skyrmion dynamics and traverse mobility

Skyrmion trajectory with red circles representing obstacles

Skyrmions could revolutionise computing exhibiting great potential in the electronic storage of information, and the key to such a breakthrough could be understanding their behaviour under applied currents.

As the demands on information technology increase, the need to improve the storage of data also grows. Many solid-state systems suggested for such a task are founded on the manipulation of skyrmions, perfect for such a role due to their size and stability. In a study published in EPJ B, authors N.P. Vizarim and C.J.O. Reichhardt from the Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, New Mexico, USA and their colleagues aim to understand how skyrmions behave in a substrate under dc and ac drives.

Read more...

EPJ B Highlight - Simulating cooperation in local communities

Modelling an increase in cooperation

Simulations reveal how the social benefits of supplies to goods and service providers in China could be improved through a payoff transfer system, which rewards individuals who cooperate the most with their local communities.

Many goods and service providers in China rely on supplies from local governments, but these are often limited by financial budgets – especially in rural villages. Members of the public must cooperate with their governments and each other in order for this system to run smoothly, but unfortunately, this balance is threatened by a small proportion of individuals who take in welfare without contributing fairly to their communities. In new research published in EPJ B, Ran Yang and colleagues at Tianjin University, China, introduce a new simulation-based approach which could help to solve this issue, through a cost-effective system which rewards individuals who use welfare systems responsibly.

Read more...

EPJ B Colloquium - Origin of optical bandgap fluctuations in graphene oxide

Graphene Oxide (GO) is a carbon-based nanomaterial prepared through the chemical oxidation of natural graphite in the presence of strong oxidants. It was identified long before pristine graphene, first reported in the 17th century by Brodie et al. Among many potential applications, GO can be used to produce reduced GO (rGO) for transparent conducting electrodes (TCEs), which has been, for instance, employed in the preparation of organic-light emitting diodes and organic photovoltaic devices. Other works also report the successful use of GO for the preparation of membranes for desalination and water purification, as well as active layers in biosensors, among many other applications. To address the needs of theses versatile applications several modifications in the synthesis of GO have been developed.

Read more...

EPJ B Highlight - Exploring mass dependence in electron-hole clusters

Electron-hole pairs can form within crystals (By Axelfoley12, from https://en.wikipedia.org/wiki/ Exciton#/media/File:Exciton.png)

New calculations reveal that the behaviours of electron-hole clusters depend strongly on the masses of their particles.

In solid materials, when an electron changes position without another to fill its place, a positively charged ‘hole’ can appear which is attracted to the original electron. In more complex situations, the process can even result in stable clusters of multiple electrons and holes, whose behaviours all depend on each other. Strangely, the masses of each particle inside a cluster can be different to their masses when they are on their own. However, physicists aren’t yet entirely clear how these mass variations can affect the overall properties of clusters in real solids. Through a study published in EPJ B, Alexei Frolov at the University of Western Ontario, Canada, reveals that the behaviour of one type of three-particle cluster displays a distinct relationship with the ratio between the masses of its particles.

Read more...

Editors-in-Chief
S. Giorgio and D. Jacob
ISSN (Print Edition): 1286-0042
ISSN (Electronic Edition): 1286-0050

© EDP Sciences