2019 Impact factor 0.630
Applied Physics

News

EPJ A Highlight - THOR: Driving collaboration in heavy-ion collision research

alt
Analysing collisions between heavy ions. Image by Pcharito - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/ index.php?curid=31433194

As an expansive platform for collaboration between different research groups, the THOR COST Action has enabled hundreds of physicists studying the aftermath of high-energy collisions between heavy ions to improve their predictions.

In the universe’s earliest moments, particles existed in an unimaginably hot plasma, whose behaviour was governed by deeply complex webs of interaction between individual particles. Today, researchers can recreate these exotic conditions through high-energy collisions between heavy ions, whose products can tell us much about how hot, strongly-interacting matter behaves. Yet without extensive, highly coordinated collaborations between researchers across many different backgrounds, studies like this simply wouldn’t be possible. This Topical Issue of EPJ A draws together a large collection of papers inspired by the theory of hot matter and relativistic heavy-ion collisions (THOR) European Cooperation in Science and Technology (COST) Action. Running between November 2016 and April 2021, THOR has provided a way for over 300 researchers involved in heavy-ion collision analysis to freely exchange their ideas, leading to exciting new advances in the wider field of particle physics.

Read more...

EPJ Plus Focus Point on Classical and Quantum Information Geometry

What is information? What can we do with information? How are we supposed to understand information? How does information influence the development of modern Science?

Some, if not all and a thousand more, of these questions come to the mind of almost every modern researcher whose research area is somehow interconnected with Information Theory. However, the answers to these questions are far from being completely unravelled, and some recent theoretical developments seem to suggest that our understanding of the geometrical aspects of Information Theory will play an increasingly important role in the quest for answers.

Read more...

EPJD Colloquium: Challenges and opportunities in verification and validation of low temperature plasma simulations and experiments

In the field of plasma physics, simulations are becoming increasingly relied upon to elucidate fundamental plasma phenomena as well as to simulate real-world plasma reactors. This new colloquium published in EPJD provides a description of how one research group (at Sandia National Laboratories) incorporates verification and validation (V&V) processes in their low temperature plasma (LTP) research and development activities.

Read more...

EPJ Plus Highlight - Understanding the mechanism that gives light a ‘little extra push’

An experimental set-up suggested by new research tests the phenomenon of radiation pressure by setting up what is almost analogous to a ‘quantum rugby scrum’

The use of light to move matter has a wide range of technological applications and could one day even power spaceflight. New research suggests a method to better understand this subtle phenomenon.

We are all familiar with the sight of a white pool ball striking a red and smoothly transferring its momentum. What is less familiar is that light can also transfer momentum and is even able to give objects a tiny push. A new paper published in EPJ Plus suggests a way to examine the mechanism behind light’s subtle momentum transfer — the Poynting vector. The paper is the work of Manuel Marqués of IFIMAC-The Condensed Matter Physics Center, and the Nicolás Cabrera Institute (INC), Universidad Autónoma de Madrid, Spain, and Shulamit Edelstein and Pedro Serena from the Spanish National Research Council (CSIC).

Read more...

EPJ Plus Highlight - A deeper understanding of how cells move and stick together

Typical cell adhesion configurations. Understanding how cells adhere is key to understanding the process allowing cells to form cohesive tissues

The way cells adhere to surfaces is an important element in allowing them to form cohesive tissues. A new study looks at how cells stick to a surface and spread across it.

Observing how cells stick to surfaces and their motility is vitally important in the study of tissue maintenance, wound healing and even understanding how cancers progress. A new paper published in EPJ Plus, by Raj Kumar Sadhu, Weizmann Institute of Science, Rehovot, Israel, takes a step towards a deeper understanding of these processes.

Read more...

EPJ H Highlight - Investigating heavy quark physics with the LHCb experiment

alt
A side view of the LHCb detector

In ten years of operation the LHCb experiment has probed the nature of physics attempting to answer some of the Universe’s most fundamental questions. A new review examines its past achievements and future potential.

A new review published in EPJ H by Clara Matteuzzi, Research Director at the National Institute for Nuclear Physics (INFN) and former tenured professor at the University of Milan, and her colleagues, examines almost three decades of the LHCb experiment – from its conception to operation at the Large Hadron Collider (LHC) – documenting its achievements and future potential.

Read more...

EPJ H Highlight - Tracking the progress of fusion power through 60 years of neutral particle analysis

alt
The Alpha Plasma Machine: a prototype of tokamaks that in the future will provide the world with clean nuclear fusion energy

Harnessing the fusion power of the stars requires the control of plasma and a powerful diagnostic tool to analyse it

As the world’s energy demands grow, so too does growing concern over the environmental impact of power production. The need for a safe, clean, and reliable energy source has never been clearer. Fusion power could fulfil such a need. A review paper published in EPJ H examines the 6-decade history of neutral particle analysis (NPA), developed in Ioffe Institute, Saint Petersburg, Russia, a vital diagnostic tool used in magnetic plasma confinement devices such as tokamaks that will house the nuclear fusion process and generate the clean energy of the future.

Read more...

EPJ E Highlight - Micro-environmental influences on artificial micromotors

Janus particles propel themselves forward

New experiments reveal the characteristic ways in which self-propelled ‘Janus particles’ with charged coatings will slide across or move away from charged boundaries in their surrounding environments.

By harvesting energy from their surrounding environments, particles named ‘artificial micromotors’ can propel themselves in specific directions when placed in aqueous solutions. In current research, a popular choice of micromotor is the spherical ‘Janus particle’ – featuring two distinct sides with different physical properties. Until now, however, few studies have explored how these particles interact with other objects in their surrounding microenvironments. In an experiment detailed in EPJ E, researchers in Germany and The Netherlands, led by Larysa Baraban at Helmholtz-Zentrum Dresden-Rossendorf, show for the first time how the velocities of Janus particles relate to the physical properties of nearby barriers.

Read more...

EPJ Data Science Highlight - A data-driven approach for assessing biking safety in cities

A snapshot of an interactive map of results obtained from the authors' model for the city of Pittsburgh, Pennsylvania, USA. Low-risk locations are colored green, while risky locations are colored red.

The bicycle is arguably the most sustainable and eco-friendly mode of transport but biking safety remains a prime concern, especially in cities. In their work recently published in EPJ Data Science Konstantinos Pelechrinis and his co-authors propose a model which provides interpretable findings for practical change.

Continue reading the blog post here.

EPJ D Colloquium - All-atom relativistic molecular dynamics simulations of channeling and radiation processes in oriented crystals

In a new Colloquium article published in EPJD, authors from the MBN Research Center (Frankfurt am Main, Germany) review achievements made recently in the field of numerical modeling of ultra-relativistic projectiles propagation in oriented crystals, radiation emission and related phenomena. This topic is highly relevant to the problem of designing novel gamma-ray light sources (LSs) based on the exposure of oriented crystals to the beams of charged particles. Crystal-based LSs can generate radiation in the photon energy range where the technologies based on the fields of permanent magnets become inefficient or incapable.

Read more...

Editors-in-Chief
S. Giorgio and D. Jacob
ISSN (Print Edition): 1286-0042
ISSN (Electronic Edition): 1286-0050

© EDP Sciences