2024 Impact factor 0.9
Applied Physics

News

EPJ B Highlight - Quantum computing: one step closer with defect-free logic gate

Majorana Bound Sates (MBSs) featured in the red area localised at the nanowire ends coexist with Fermionic Bound States (FBSs) featured in the blue area, where the spin orbit interaction vector changes its direction.

Developing a new approach to quantum computing, based on braided quasi-particles as a logic gate to speed up computing, first requires understanding the potential error-inducing factors

What does hair styling have in common with quantum computing? The braiding pattern has inspired scientists as a potential new approach to quantum calculation. The idea is to rely on a network of intersecting chains, or nanowires, containing one-dimensional quasi-particles. The way these quasi-particles evolve in space time produces a braid-like pattern. These braids could then be used as the logic gate that provides the logical function required for calculations in computers. Due to their intrinsic properties, such braids are much more difficult to destabilise and less error-prone. Yet, local defects can still arise along nanowires. In a study published in EPJ B, Jelena Klinovaja affiliated with both the University of Basel, Switzerland and Harvard University, Cambridge, MA, USA, and Daniel Loss from the University of Basel, Switzerland identify the potential sources of computer errors arising from these defects.

Read more...

EPJ D Highlight - The new frontier in plasma medicine

Likelihood that negatively charged oxygen ions will demonstrate scattering in water vapour based on experimental results.

Data on the transport of electrical charges in water vapour provide the key ingredients to new plasma models applicable to medicine

Applications of plasmas in medicine are a new frontier in therapeutic treatment. For example, they can help in stimulating tissue regeneration in the contexts of wound healing and dermatology. Before these and further applications can be developed, it is essential to understand the processes at work in plasmas - a unique kind of gas-like state of matter containing charged particles. Now a study published in EPJ D by a team led by Zoran Petrović from the University of Belgrade, Serbia, provides previously unavailable data on oxygen ion transport and the likelihood of such ions interacting with water molecules. These could contribute to new models of plasmas in liquids which account for how discharges are created in water vapour.

Read more...

EPJ B Highlight - New remote control for molecular motors

Nanomagnet rotating about a fixed vertical axis.

It is now theoretically possible to remotely control the direction in which magnetic molecules spin, which opens the door to designing applications based on molecular motors

In the eyes of physicists, magnetic molecules can be considered as nanoscale magnets. Remotely controlling the direction in which they rotate, like spinning tops, may intuitively be difficult to achieve. However, Russian physicists have just demonstrated that it is theoretically possible to do so. They have shown that a change of direction in the circular polarisation of an external magnetic field leads to a change in the direction of the mechanical rotation of the molecule. These findings by Iosif Davidovich Tokman and Vera Il‘inichna Pozdnyakova from the Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia, were recently published in EPJ B. Possible applications of the phenomenon include rotating magnetic molecules used as molecular rotors to power molecular motors.

Read more...

EPJE: New section about tips and tricks in soft matter and biological physics

alt

EPJE Associate Editors Kari Dalnoki-Veress and James A. Forrest open the journal for submissions of a new type of paper: Tips and Tricks.

Underpinning the scientific enterprise there is often some crucial numerical recipe, a sample cell configuration, a sample preparation method, or experimental design. In some cases more emails were shared describing a trick than citations gathered by the paper where a brief description was provided. Typically such details are only briefly described in the journal literature, passed only from student to student, or simply shared as a ‘personal communication’. Sometimes such enabling techniques are not passed on at all. In all such cases, the scientific community as a whole is missing out, lacking a way to document this knowledge and to build on it. Moreover, while the specific research of some team may not be directly relevant to another, a transformative computational or experimental methodology can form the commonality between researchers working in different fields.

2015 will see the launch of a new section of EPJ E: Tips and Tricks.

Read more...

EPJ A Highlight - Subtracted dispersion relation estimate of two-photon exchange

Subtracted DR prediction for the elastic cross section. The subtraction constant, denoted by ε0, is fitted to data (blue band from the A1@MAMI Coll.).

Elastic electron-proton scatterings (with one-photon exchange) have always provided fundamental information on general properties of the proton. Recently, two experimental approaches, with and without polarized protons, gave strikingly different results for the electric over magnetic proton form factor ratio. Similarly, a mysterious discrepancy (“the proton radius puzzle”) has been observed in the measurement of the proton charge radius in different experiments, one of which is electron-proton scattering. Two-photon exchange (TPE) contributions have been proposed as a plausible solution to resolve the puzzles, but their estimates have strong model dependences. A quantitative understanding of TPE effects, based on general principles and avoiding model dependences, is necessary. A subtracted dispersion relation formalism for the TPE has been developed and tested. Its relative effect δ on the elastic cross section is in the 1-2 % range for a low value of the momentum transfer Q2 as function of the kinematic parameter ε, ranging between ε = 0 (backward scattering) and ε = 1 (forward scattering).

Read more...

EPJ Plus Highlight - An efficient Lattice-Boltzmann approach for studying compressible flow in nonlinear thermoacoustic engines

Contours of the Mach number near the stack at phase π under the limit cycle.

Thermoacoustics is the physics of the interaction of thermal and acoustic fields. The nonlinear acoustic effect and low Mach number compressible flow in thermoacoustic engines make the theoretical analysis of such systems extremely complicated. A new study investigates the nonlinear self-excited thermoacoustic onset in a Rijke tube via the lattice Boltzmann method (LBM), which simulates the fluid flow by tracking the evolution of particles and obtains flow stream and heat transfer patterns from the kinetic level. The adopted LBM model, which was developed by the authors, convincingly simulates the Navier-Stokes-Fourier equations, treating accurately the nonlinear process of wave excitation of coupled fields and providing reliable estimates for pressure, density, velocity and temperature in such a finite geometry.

Read more...

EPJB Colloquium - How to understand real-world complexity through multiplex networks

An illustrative example of the multiplex network of nine nodes with two layers, the red solid) and the blue (dashed) layer.

Many real-world complex systems (from living organisms to human societies to transportation system) are best modeled by multiplex networks of interacting network layers. The study of multiplex network is one of the newest and hottest themes in the statistical physics of complex networks. Compared to single networks the current level of our understanding of multiplex networks is far from satisfactory. Pioneering studies have proven that the multiplexity has broad impact on the system's structure and function. Novel phenomena, unforeseen in traditional single-layer framework, can arise as a consequence of the coupling of network layers. In this EPJ B Colloquium Kyu-Min Lee, Byungjoon Min, and Kwang-Il Goh organize and review of the growing body of literature on statistical physics of multiplex networks by categorizing existing studies broadly according to the type of layer coupling in the problem. They discuss the recent major developments and point out some outstanding open challenges and research questions that warrant serious investigation, such as the identification of the minimal couplings (in the renormalization group sense) relevant to the characteristic discontinuous transitions in multiplex systems.

EPJ E Highlight - How do vertebrates take on their form?

alt
Modeling of the fold formation mechanism. A sheet of rubber on which a (stiffer) paper label is stuck buckles along the boundary between the stiff zone and the soft zone when it is stretched. This reproduces the formation of folds along the boundaries between cellular domains. © VF-CNRS-MSC/EDP Sciences-SIF-Springer SBM

A simple physical mechanism that can be assimilated to folding, or buckling, means that an unformed mass of cells can change in a single step into an embryo organized as a typical vertebrate. This is the main conclusion of work by a team involving physicists from the Laboratoire Matière et Systèmes Complexes (CNRS/Université Paris Diderot) and a biologist from the Laboratoire de Biologie du Développement (CNRS/UPMC).

Thanks to microscopic observations and micromechanical experiments, the scientists have discovered that the pattern that guides this folding is present from the early stages of development. The folds that will give a final shape to the animal form along the boundaries between cell territories with different properties. This work has shed light on the mechanism for the formation of vertebrates and thus how they appeared during evolution. These findings have just been published in EPJ E.

Read more...

EPJ D Highlight - Novel high-power microwave generator

Axial profile of the axisymmetric semi-circular structure to be used as a slow wave structure in backward wave oscillators.

A new study explores the viability of a novel structure to be used as a component of a high-power microwave source, designed to transfer energy to targets via ultra-high-frequency radio waves

High-power microwaves are frequently used in civil applications, such as radar and communication systems, heating and current drive of plasmas in fusion devices, and acceleration in high-energy linear colliders. They can also be used for military purpose in directed-energy weapons or missile guidance systems. In a new study published in EPJ D, scientists from Bangladesh demonstrate that their proposed novel method, which is capable of producing such microwaves, offers a viable alternative to traditional approaches. The solution was developed by Md. Ghulam Saber and colleagues from the Islamic University of Technology in Gazipur, Bangladesh.

Read more...

EPJ D – Graphical abstracts now required in EPJ D

We are pleased to inform the readers and authors of EPJ D that from now on articles published in the journal will feature a graphical abstract. While it is not meant to provide specific results, this element will serve the purpose of conveying visually the gist of the article, along with the title. Authors may use an item already present in the manuscript or a purpose-made graphic. The use of color is strongly encouraged. Images previously published under the copyright of other publishers cannot be considered.

Editors-in-Chief
V. Mauchamp et P. Moreau
ISSN (Print Edition): 1286-0042
ISSN (Electronic Edition): 1286-0050

© EDP Sciences