2016 Impact factor 0.684
Applied Physics

News

EPJ D Colloquium: Evaluating experimental molecular physics studies of radiation damage in DNA

Molecular physics has made significant new contributions to our understanding of radiation damage at the molecular level, and led to improved cancer therapy through both experimental and theoretical advances, in particular the development of new damage measurement and analysis techniques.

In this EPJ D Colloquium paper, Małgorzata A. Śmiałek summarizes and highlights the most prominent findings in atomic and molecular physics, that have contributed towards a better understanding of the fundamental processes in biological systems and relevant to the next generation of radiation therapies. She also comments on the practical experimental challenges that have been met while investigating the more complex targets.

Read more...

EPJ B Highlight - When crystal vibrations‘ inner clock drives superconductivity

Superconductor. © ktsdesign/Fotolia

Tweaking equations to drive greater superconductivity-inducing crystal vibrations proves theoretical possibility of creating higher temperature superconductors

Superconductivity is like an Eldorado for electrons, as they flow without resistance through a conductor. However, it only occurs below a very low critical temperature. Physicists now believe they can enhance superconductivity - the idea is to externally drive its underlying physical phenomena by changing how ions vibrating in the crystal lattice of the conductor material, called phonons, interact with electron flowing in the material. Andreas Komnik from the University of Heidelberg and Michael Thorwart from the University of Hamburg, Germany, adapted the simplest theory of superconductivity to reflect the consequences of externally driving the occurrence of phonons. Their main result, published in EPJ B, is a simple formula explaining how it is theoretically possible to raise the critical temperature using phonon driving.

Read more...

EPJ-N accepted for Emerging Sources Citation Index (ESCI)

Thomson Reuters Emerging Sources Citation Index (ESCI)

EDP Sciences are pleased to announce that EPJ Nuclear Sciences and Technologies (EPJ-N) has been accepted for indexing in the Thomson Reuters Emerging Sources Citation Index (ESCI). This means that articles published in the journal will be searchable, discoverable and citable via Web of Science.

Read more...

EPJ Applied Metamaterials now indexed in DOAJ (November 2016)

We are delighted to announce that "EPJ Applied Metamaterials" is now indexed in the Directory of Open Access Journals (DOAJ), a community-curated online directory that indexes and provides access to high quality, open access, peer-reviewed journals.

SharedIt! The content sharing initiative is extended to include the EPJ journals

SharedIt!

We are delighted to announce that Springer Nature has rolled out its free content sharing initiative, named SharedIt, to all of the Springer Nature-owned journals portfolio, along with 1,000 co-published partner journals. This includes EPJA, EPJB, EPJD, EPJE, EPJ ST, EPJH, EPJ Plus, EPJ DS, EPJ TI, EPJ QT.

We want researchers to share content easily and legally. Our SharedIt content-sharing initiative means that links to view-only, full-text research articles can be posted anywhere - including on social media platforms, author websites and in institutional repositories - so researchers can share research with colleagues and general audiences.

Read more...

EPJ B Special issue dedicated to the Volker Heine Award

EPJ B, in partnership with the Ψk conference, is honoured to introduce this monthly issue with five articles written by the finalists of the Volker Heine Award 2015.

The Ψk conference is the foremost event in the field of electronic structure and computation in condensed matter, and the Volker Heine award is one of its highlights. Being intended for young researchers, the award aims at helping their career by exposing their work in a prestigious international conference, and adding a modest point to their Curriculum Vitae.

Read more...

EPJ B Colloquium: First-principles dynamics of electrons and phonons

Feynman diagram for the phonon-electron scattering process

First-principles calculations combining density functional theory and many-body perturbation theory can provide microscopic insight into the dynamics of electrons and phonons in materials. In this EPJ B Colloquium, Marco Bernardi, winner of the Psi’K young investigator award, reviews this theoretical and computational framework, focusing on perturbative treatments of scattering, dynamics, and transport of electrons and phonons. The article examines applications of these first-principles calculations in electronics, lighting, spectroscopy, and renewable energy.

Read more...

EPJ E Highlight - Physicists reveal cocktails with Dr Jekyll and Mr Hyde features

False colour image of the long-range concentration fluctuations arising in a critical binary mixture.

Study explains how long-range effects in two-liquid cocktails have a bearing on the diffusion of their molecules, resulting in the coexistence of different characteristics within the same fluid

Disturbing a mix of two liquids can yield some surprising effects. For example, if one portion of the mixture is brought to a different composition, it starts a process called diffusion, which continues until the liquid mix reverts to the resting point, which physicists refer to as equilibrium. Understanding the underlying physical phenomenon matters because diffusion is ubiquitous in physical and biological processes, such as the transport of nutrients within our cells. Now, an Italian team of physicists has found that two-liquid cocktails display long-range correlations, both at equilibrium and when disturbed. This means that large regions with slightly different physical properties coexist within the same fluid. Outside the equilibrium condition, the authors explain, this is due to the coupling between the difference in concentration between different portions of the liquid and spontaneous fluctuations, which are also observed when the mix is at equilibrium. These findings have been published in EPJ E as part of the Topical Issue "Non-isothermal transport in complex fluids" by Fabio Giavazzi from the University of Milan, Italy, and colleagues. They imply that the long-range effects, observed when the mixture is not at equilibrium, need to be taken into account as an additional contribution to the effects observed when the mixture is at equilibrium, so as to understand the diffusion mechanisms.

Read more...

EPJ Data Science Highlight - Mining digital crumbs helps predict crowds’ mobility

Daily number of commuters arriving in New York City from the different counties of New York State.

Analysing the traces of human behaviour from geolocalisation data gives clues for more accurate urban planning

Getting urban planning right is no mean feat. It requires understanding how and when people travel between different places. This knowledge, in turn, helps in dimensioning roads and motorways and in scaling the capacity of utilities, such as power grids or mobile phone towers. Now, physicists at the Institute for Scientific Interchange Foundation in Turin, Italy, have exploited the geolocalisation data from millions of users of the photo sharing site Flickr to show how it is possible to predict crowd movements. Mariano Beiró and colleagues have combined this data with existing theoretical models explaining the movement of people. In a study published in EPJ Data Science, they show that their approach can help improve predictions concerning the nature of travel of large crowds of people between two places.

Read more...

EPJ B Highlight - Supersonic phenomena, the key to extremely low heat loss nano-electronics

Low-frequency pinned discrete breather when the on-site interaction largely overwhelms the inter-site force.

Supersonic solitary waves in nano-electronics crystals show potentials for electric charge or matter transport and energy storage with extremely low heat dissipation

Freak waves, as well as other less striking localised excitations, occur in nature at every scale. The current theory and models of such waves can be applied to physics and, among others, to oceanography, nonlinear optics and lasers, acoustics, plasmas, cosmological relativity and neuro-dynamics. However, they could also play a significant role at the quantum scale in nano-electronics. In a recent study, Manuel G. Velarde from the Pluridisciplinary Institute of the University Complutense of Madrid, Spain, and colleagues, performed computer simulations to compare two types of localised excitations in nano-electronics. Their findings, published in a recent study in EPJ B, confirm that such localised excitations are natural candidates for energy storage and transport. These, in turn, could lead to applications such as transistors with extremely low heat dissipation not using silicon.

Read more...

Editors-in-Chief
V. Serin and L. Vina
ISSN (Print Edition): 1286-0042
ISSN (Electronic Edition): 1286-0050

© EDP Sciences