2021 Impact factor 1.168
Applied Physics


EPJ B Highlight - Ranking nanodevice functionality methods

A new paper links the deformation of molecules like benzene to charge transfer.

Examining the charge transfer influence of three charge control methods and producing a hierarchy promises important practical applications in nanodevices.

As the demand for nanodevices grows so too does the need to improve the functionality of such devices, which is vulnerable to changes in the charge distribution, energy levels or conformation. Hence the desire to assess the three current charge control methods: gating by electro-chemicals, doping by pendant groups and doping by annealed motifs.

A new paper published in EPJ B authored by Zainelabideen Yousif Mijbil, from the College of Science, Al-Qasim Green University, Al-Qasim Town, Babylon Province, Iraq, aims to prioritize and rank nano-device functionality methods according to their potential impact as well as justifying the reason for such an influence-based hierarchy.


EPJ C: Prof. Laura Baudis awarded with the 2022 Charpak-Ritz Prize

Congratulations to Laura Baudis, Associate Editor of EPJC and former Editor-in-Chief of the section Experimental Astroparticle Physics from 2016 to 2021, for this special distinction. This prize recognizes her “leadership in international astro-particle physics collaborations, outreach activities and seminal contributions to dark matter research”. A full account can be found here.

EPJ B Highlight - A novel computing approach to recognising chaos

An image showing portraits of chaos in systems with different set parameters.

Chaos isn’t always harmful to technology, in fact, it can have several useful applications if it can be detected and identified.

Chaos and its chaotic dynamics are prevalent throughout nature and through manufactured devices and technology. Though chaos is usually considered a negative, something to be removed from systems to ensure their optimal operation, there are circumstances in which chaos can be a benefit and can even have important applications. Hence a growing interest in the detection and classification of chaos in systems.

A new paper published in EPJ B authored by Dagobert Wenkack Liedji and Jimmi Hervé Talla Mbé of the Research unit of Condensed Matter, Electronics and Signal Processing, Department of Physics, University of Dschang, Cameroon, and Godpromesse Kenné, from Laboratoire d’ Automatique et d’Informatique Appliquée, Department of Electrical Engineering, IUT-FV Bandjoun, University of Dschang, Cameroon, proposes using the single nonlinear node delay-based reservoir computer to identify chaotic dynamics.


EPJ E Highlight - The relationship between active areas and boundaries with energy input in snapping shells

An image showing the schematics of a nonhomogeneous spherical cap with an active bulk and an active edge.

New research looks at how the geometry of shells relates to the energy input required to actuate snap-through instability.

In nature, diverse organisms such as the hummingbird and Venus flytrap use rapid snapping motions to capture prey, inspiring engineers to create designs that function using snap-through instability of shell structures. Snapping rapidly releases stored elastic energy and does not require a continuously applied stimulus to maintain an inverted shape in bistable structures.

A new paper published in EPJ E authored by Lucia Stein-Montalvo, Department of Civil and Environmental Engineering, Princeton University, and Douglas P. Holmes, Department of Mechanical Engineering, Boston University, along with co-authors Jeong-Ho Lee, Yi Yang, Melanie Landesberg, and Harold S. Park, examines how restricting the active area of the shell boundary allows for a large reduction in its size, and decreases the energy input required to actuate snap-through behaviour in the shell to guide the design of efficient snapping structures.


EPJ B Highlight - Investigating newly synthesised thallium compounds for optoelectronic devices

A new research paper tests newly Synthesised Compounds for their suitability in Optoelectronic devices. Credit: Robert Lea

The burgeoning field of optoelectronic devices is driving the development of new alkali metal-based chalcogenides with qualities that have to be robustly investigated.

The need for efficient optoelectronic devices is growing and hand-in-hand so too is the challenge of discovering new semiconductors with valuable properties. This has spurred significant research in the synthesis and characterization of new alkali metal-based (AM) chalcogenides involving copper, silver and alkali metal with valuable properties like flexibility, high thermal stability, semiconductivity, photovoltaic effects.

Inspired by the growing demand for new optimum semiconducting materials, a new paper published in EPJ B authored by Abdelmadjid Bouhemadou, Laboratory for Developing New Materials and their Characterizations, Department of Physics, Faculty of Science, University of Ferhat Abbas Setif, Algeria and his co-authors, investigated in detail the structural, elastic, electronic and optical properties of two newly synthesized compounds, namely Tl2CdGeSe4 and Tl2CdSnSe4.


EPJ D Highlight - Astrophysical plasma study benefits from new soft X-ray transition energies benchmark

An artist’s impression of an X-ray binary, the kind of cosmic event that will benefit from a new benchmark in the study of astrophysical plasmas. Credit: Dana Berry/NASA Goddard Space Flight Center

The new benchmark for X-ray transition energies set for neon, carbon dioxide, and sulfur hexafluoride paves a pathway to high accuracy analysis of astrophysical plasmas.

The analysis of astrophysical plasmas is vital in the quest to learn about some of the Universe’s most powerful and mysterious objects and events such as stellar coronae and winds, cataclysmic variables, X-ray binaries containing neutron stars and black holes, supernova remnants, or outflows in active galactic nuclei. The success of such research will lead to future astrophysical X-ray observatories enabling scientists to access techniques that are currently not available to X-ray astronomy. A key requirement for the accurate interpretation of high-resolution X-ray spectra is accurate knowledge of transition energies.

A new paper published in EPJ D authored by J. Stierhof, of the Dr. Karl Remeis-Observatory and Erlangen Centre for Astroparticle Physics of Friedrich-Alexander-Universt Erlangen-Nürnberg, Bamberg, Germany, and coauthors utilizes a newly introduced experimental setup at the BESSY II synchrotron facility to provide precise calibration references in the soft X-ray regime of neon, carbon dioxide, and sulfur hexafluoride gases.


EPJ H Highlight - Documenting the first attempt at a gravitational-wave observatory in Europe

Binary neutrons stars generate ripples in spacetime, gravitational waves, detected here on Earth by interferometers like LIGO. Credits: R. Hurt/Caltech-JPL

EUROGRAV was set to be a network of gravitational wave antennas in Europe. A new paper looks at the reasons it never happened.

First predicted in Einstein’s theory of general relativity, gravitational waves are tiny ripples in spacetime generated by titanic and powerful cosmic events. The great physicist believed that no equipment would ever be sensitive to detect these faint cosmic ripples. Fortunately, Einstein was wrong, but that doesn’t mean that the detection of gravitational waves has been easy.

The history of a planned array interferometer gravitational wave detectors to be built in Europe during the late 1980s, the reasons this failed, and the parallels with current detectors, are documented in a new paper published in EPJ H, authored by Adele La Rana, University of Verona, and INFN Section of Sapienza University, Italy.


EPJ Plus Highlight - Tackling large data sets and many parameter problems in particle physics

The Pandemonium tool links together six clusters of data and provides a graphical interpretation.

A new tool to break down and segment large data set problems and problems with many parameters in particle physics could have a wide range of applications.

One of the major challenges in particle physics is how to interpret large data sets that consist of many different observables in the context of models with different parameters.

A new paper published in EPJ Plus, authored by Ursula Laa from the Institute of Statistics at BOKU University, Vienna, and German Valencia from the School of Physics and Astronomy, Monash University, Clayton, Australia, looks at the simplification of large data set and many parameter problems using tools to split large parameter spaces into a small number of regions.


EPJ H Highlight - Acknowledging Fermi’s contributions to early quantum statistics

Fermi’s research was notably independent. https://en.wikipedia.org/wiki/ Enrico_Fermi#/media/File: Enrico_Fermi_1943-49.jpg

Enrico Fermi’s ideas played a key role in the origins of quantum statistics, but so far, they have been largely overlooked in historical analysis

Within large systems of identical fermions, Fermi-Dirac statistics describes how identical fermions may never occupy the same quantum state. First introduced by Italian physicist, Enrico Fermi, this concept was a key step in our early understanding of quantum mechanics – yet so far, Fermi’s contributions have been largely overlooked in historical analysis. Through new research published in EPJ H, Enric Pérez and Joana Ibáñez, both at the University of Barcelona, Spain, offer a critical analysis of Fermi’s ideas, and assess their immediate impact on our early conceptions of quantum mechanics.


EPJ H Highlight - Assessing the modern relevance of Schrödinger’s time reversal

Schrödinger’s ideas transformed quantum mechanics. https://en.wikipedia.org/wiki/Erwin_ Schrödinger#/media/File:Erwin_ Schrödinger_(1933).jpg

Erwin Schrödinger’s landmark 1931 paper provided a basis for several important conceptions in quantum mechanics, but a new translation and commentary highlights its continuing relevance in modern statistical nanophysics

In 1931, Erwin Schrödinger published a ground-breaking paper, named ‘On the Reversal of the Laws of Nature.’ The study aimed to prove the possibility of a classical structure governed by probability, which displays a property called ‘time reversal symmetry’: where the physical laws underlying the system would remain the same, whether time flowed forwards or backwards. A new English translation of Schrödinger’s paper, published in EPJ H, has now been made by Raphael Chetrite at the University of Nice Sophia Antipolis; Paolo Muratore-Ginanneschi at University of Helsinki; and Kai Schwieger at iteratc GmbH Stuttgart. In an additional commentary, the team emphasise the relevance of his intuitions for modern developments in statistical nanophysics.


S. Giorgio and D. Jacob
ISSN (Print Edition): 1286-0042
ISSN (Electronic Edition): 1286-0050

© EDP Sciences