2019 Impact factor 0.630
Applied Physics

News

EPJ D Topical review - Crystal-based intensive gamma-ray light sources

In a Topical review just published in EPJD, A.V. Korol and A.V. Solov'yov (MBN Research Center, Germany) discuss possibilities for designing and practical realization of novel intensive gamma-ray Crystal-based LSs (CLS) operating at photon energies from 102 keV and above that can be constructed exposing oriented crystals to beams of ultrarelativistic particles. CLSs can generate radiation in the photon energy range where the technologies based on the fields of permanent magnets become inefficient or incapable.

Read more...

Roberta Caruso joins the EPJ Scientific Advisory Committee (SAC)

Roberta Caruso

The Scientific Advisory Committee of EPJ is delighted to welcome Dr Roberta Caruso as the new representative for the European Physical Society.

Roberta Caruso is a post-doctoral researcher at University of Naples, where she works in the field of hybrid superconducting devices and oxide interfaces. She has been an EPS member since 2010, where she worked for many years within the committee of the Young Minds project.

EPJ D Highlight - Avoiding environmental losses in quantum information systems

Transitioning states in diamond imperfections.

Through new techniques for generating ‘exceptional points’ in quantum information systems, researchers have minimised the transitions through which they lose information to their surrounding environments.

Recently, researchers have begun to exploit the effects of quantum mechanics to process information in some fascinating new ways. One of the main challenges faced by these efforts is that systems can easily lose their quantum information as they interact with particles in their surrounding environments. To understand this behaviour, researchers in the past have used advanced models to observe how systems can spontaneously evolve into different states over time – losing their quantum information in the process. Through new research published in EPJ D, M. Reboiro and colleagues at the University of La Plata in Argentina have discovered how robust initial states can be prepared in quantum information systems, avoiding any unwanted transitions extensive time periods.

Read more...

EPJ B Highlight - Antiferromagnet lattice arrangements influence phase transitions

Antiferromagnets display orderly lattice formations. From https://en.wikipedia.org/wiki/ Antiferromagnetism#/media/ File:Antiferromagnetic_ordering.svg credit Michael Schmid

Calculations involving ‘imaginary’ magnetic fields show how the transitioning behaviours of antiferromagnets are subtly shaped by their lattice arrangements.

Antiferromagnets contain orderly lattices of atoms and molecules, whose magnetic moments are always pointed in exactly opposite directions to those of their neighbours. These materials are driven to transition to other, more disorderly quantum states of matter, or ‘phases,’ by the quantum fluctuations of their atoms and molecules – but so far, the precise nature of this process hasn’t been fully explored. Through new research published in EPJ B, Yoshihiro Nishiyama at Okayama University in Japan has found that the nature of the boundary at which this transition occurs depends on the geometry of an antiferromagnet’s lattice arrangement.

Read more...

EPJ E Celebrates 20th Anniversary

alt

In 2020 The European Physical Journal E - Soft Matter and Biological Physics marks twenty years since the publication of its first papers. To commemorate this milestone, the Editors-in-Chief have made a selection of articles published over these two decades, representing the breadth of coverage of the journal. These articles are now freely accessible until 15 October via this Q&A with Prof Holger Stark, Editor-in-Chief of EPJ E.

EPJ H Highlight - A question of reality

alt
Spooky action at a distance: Bell’s Theorem in sketch form. Credit: Reinhold Bertlmann (1988). Original presented to Bell on the occasion of his 60th birthday by R. Bertlmann

John Stewart Bell’s eponymous theorem and inequalities set out, mathematically, the contrast between quantum mechanical theories and local realism. They are used in quantum information, which has evolving applications in security, cryptography and quantum computing.

The distinguished quantum physicist John Stewart Bell (1928-1990) is best known for the eponymous theorem that proved current understanding of quantum mechanics to be incompatible with local hidden variable theories. Thirty years after his death, his long-standing collaborator Reinhold Bertlmann of the University of Vienna, Austria, has reviewed his thinking in a paper for EPJ H, ‘Real or Not Real: That is the question’. In this historical and personal account, Bertlmann aims to introduce his readers to Bell’s concepts of reality and contrast them with some of his own ideas of virtuality.

Read more...

EPJ B Highlight - Impurities enhance polymer LED efficiencies

PLED polymers evolve characteristically during operation

Molecular dynamics simulations have shown that the mysteriously high efficiency of polymer LEDs arises from interactions between triplet excitons in their polymer chains, and unpaired electrons in their molecular impurities.

Polymer LEDs (PLEDs) are devices containing single layers of luminescent polymers, sandwiched between two metal electrodes. They produce light as the metal layers inject electrons and holes into the polymer, creating distortions which can combine to form two different types of electron-hole pair: either light-emitting ‘singlets,’ or a non-emitting ‘triplets.’ Previous theories have suggested that the ratio between these two types should be around 1:3, which would produce a light emission efficiency of 25%. However, subsequent experiments showed that the real value can be as high as 83%. In new research published in EPJ B, physicists in China, led by Yadong Wang at Hebei North University, found that this higher-than-expected efficiency can be reached through interactions between triplet excitons, and impurities embedded in the polymer.

Read more...

EPJ Plus Highlight - Understanding electron transport in graphene nanoribbons

Diverse aromatic molecules bound to Graphene Nanoribbons result in different electron transport behaviour

New understanding of the electrical properties of graphene nanoribbons (GRBs), when bounded with aromatic molecules, could have significant benefits in the development of chemosensors and personalised medicine.

Graphene is a modern wonder material possessing unique properties of strength, flexibility and conductivity whilst being abundant and remarkably cheap to produce, lending it to a multitude of useful applications – especially true when these 2D atom-thick sheets of carbon are split into narrow strips known as Graphene Nanoribbons (GNRs). New research published in EPJ Plus, authored by Kristiāns Čerņevičs, Michele Pizzochero, and Oleg V. Yazyev, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, aims to better understand the electron transport properties of GNRs and how they are affected by bonding with aromatics. This is a key step in designing technology such chemosensors.

Read more...

EPJ B Colloquium - Understanding nonequilibrium scaling laws governing collapse of a polymer

Recent emerging interest in experiments of single-polymer dynamics have encouraged computational physicists to revive their understanding of these phenomena, particularly in the nonequilibrium context. In a Colloquium recently published in EPJB, authors from Institut für Theoretische Physik at the University of Leipzig discuss the currently evolving approaches of investigating the evolution dynamics of homopolymer collapse using computer simulations.

Read more...

EPJ D Colloquium - Simulating lattice gauge theories within quantum technologies

Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects of QCD itself, lattice gauge theories also play an important role in condensed matter physics and in quantum information science. In this way, lattice gauge theories provide both motivation and a framework for inter-disciplinary research towards the development of special purpose digital and analog quantum simulators, and ultimately of scalable universal quantum computers.

Read more...

Editors-in-Chief
S. Giorgio and D. Jacob
ISSN (Print Edition): 1286-0042
ISSN (Electronic Edition): 1286-0050

© EDP Sciences